MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leiso Structured version   Unicode version

Theorem leiso 11710
Description: Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leiso  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( A ,  B )  <-> 
F  Isom  <_  ,  <_  ( A ,  B ) ) )

Proof of Theorem leiso
StepHypRef Expression
1 df-le 9128 . . . . . . 7  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
21ineq1i 3540 . . . . . 6  |-  (  <_  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( A  X.  A
) )
3 indif1 3587 . . . . . 6  |-  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  \  `'  <  )
42, 3eqtri 2458 . . . . 5  |-  (  <_  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  \  `'  <  )
5 xpss12 4983 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  A  C_ 
RR* )  ->  ( A  X.  A )  C_  ( RR*  X.  RR* )
)
65anidms 628 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( A  X.  A )  C_  ( RR*  X.  RR* ) )
7 dfss1 3547 . . . . . . 7  |-  ( ( A  X.  A ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
86, 7sylib 190 . . . . . 6  |-  ( A 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A ) )
98difeq1d 3466 . . . . 5  |-  ( A 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( A  X.  A
) )  \  `'  <  )  =  ( ( A  X.  A ) 
\  `'  <  )
)
104, 9syl5req 2483 . . . 4  |-  ( A 
C_  RR*  ->  ( ( A  X.  A )  \  `'  <  )  =  (  <_  i^i  ( A  X.  A ) ) )
11 isoeq2 6042 . . . 4  |-  ( ( ( A  X.  A
)  \  `'  <  )  =  (  <_  i^i  ( A  X.  A
) )  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) ) )
1210, 11syl 16 . . 3  |-  ( A 
C_  RR*  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B ) 
\  `'  <  )
( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) ) )
131ineq1i 3540 . . . . . 6  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )
14 indif1 3587 . . . . . 6  |-  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
1513, 14eqtri 2458 . . . . 5  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
16 xpss12 4983 . . . . . . . 8  |-  ( ( B  C_  RR*  /\  B  C_ 
RR* )  ->  ( B  X.  B )  C_  ( RR*  X.  RR* )
)
1716anidms 628 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( B  X.  B )  C_  ( RR*  X.  RR* ) )
18 dfss1 3547 . . . . . . 7  |-  ( ( B  X.  B ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B
) )
1917, 18sylib 190 . . . . . 6  |-  ( B 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B ) )
2019difeq1d 3466 . . . . 5  |-  ( B 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( B  X.  B
) )  \  `'  <  )  =  ( ( B  X.  B ) 
\  `'  <  )
)
2115, 20syl5req 2483 . . . 4  |-  ( B 
C_  RR*  ->  ( ( B  X.  B )  \  `'  <  )  =  (  <_  i^i  ( B  X.  B ) ) )
22 isoeq3 6043 . . . 4  |-  ( ( ( B  X.  B
)  \  `'  <  )  =  (  <_  i^i  ( B  X.  B
) )  ->  ( F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B ) ) )
2321, 22syl 16 . . 3  |-  ( B 
C_  RR*  ->  ( F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B )  <->  F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) ) )
2412, 23sylan9bb 682 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B ) ) )
25 isocnv2 6053 . . 3  |-  ( F 
Isom  <  ,  <  ( A ,  B )  <->  F 
Isom  `'  <  ,  `'  <  ( A ,  B
) )
26 eqid 2438 . . . 4  |-  ( ( A  X.  A ) 
\  `'  <  )  =  ( ( A  X.  A )  \  `'  <  )
27 eqid 2438 . . . 4  |-  ( ( B  X.  B ) 
\  `'  <  )  =  ( ( B  X.  B )  \  `'  <  )
2826, 27isocnv3 6054 . . 3  |-  ( F 
Isom  `'  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  ( ( A  X.  A ) 
\  `'  <  ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B ) )
2925, 28bitri 242 . 2  |-  ( F 
Isom  <  ,  <  ( A ,  B )  <->  F 
Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) )
30 isores1 6056 . . 3  |-  ( F 
Isom  <_  ,  <_  ( A ,  B )  <->  F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  <_  ( A ,  B ) )
31 isores2 6055 . . 3  |-  ( F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  <_  ( A ,  B )  <->  F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
3230, 31bitri 242 . 2  |-  ( F 
Isom  <_  ,  <_  ( A ,  B )  <->  F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B
) ) ( A ,  B ) )
3324, 29, 323bitr4g 281 1  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( A ,  B )  <-> 
F  Isom  <_  ,  <_  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    \ cdif 3319    i^i cin 3321    C_ wss 3322    X. cxp 4878   `'ccnv 4879    Isom wiso 5457   RR*cxr 9121    < clt 9122    <_ cle 9123
This theorem is referenced by:  leisorel  11711  icopnfhmeo  18970  iccpnfhmeo  18972  xrhmeo  18973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-le 9128
  Copyright terms: Public domain W3C validator