MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloe Unicode version

Theorem leloe 8924
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.)
Assertion
Ref Expression
leloe  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )

Proof of Theorem leloe
StepHypRef Expression
1 lenlt 8917 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
2 eqcom 2298 . . . . 5  |-  ( B  =  A  <->  A  =  B )
32orbi1i 506 . . . 4  |-  ( ( B  =  A  \/  A  <  B )  <->  ( A  =  B  \/  A  <  B ) )
4 orcom 376 . . . 4  |-  ( ( A  =  B  \/  A  <  B )  <->  ( A  <  B  \/  A  =  B ) )
53, 4bitri 240 . . 3  |-  ( ( B  =  A  \/  A  <  B )  <->  ( A  <  B  \/  A  =  B ) )
6 axlttri 8910 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  -.  ( B  =  A  \/  A  <  B
) ) )
76ancoms 439 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  <->  -.  ( B  =  A  \/  A  <  B
) ) )
87con2bid 319 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  =  A  \/  A  < 
B )  <->  -.  B  <  A ) )
95, 8syl5rbbr 251 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  B  < 
A  <->  ( A  < 
B  \/  A  =  B ) ) )
101, 9bitrd 244 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039   RRcr 8752    < clt 8883    <_ cle 8884
This theorem is referenced by:  ltle  8926  leltne  8927  lelttr  8928  ltletr  8929  letr  8930  leid  8932  ltlen  8938  leloei  8951  leloed  8978  lemul1  9624  lemul1a  9626  squeeze0  9675  fimaxre  9717  sup3  9727  nn0ge0  10007  nn0sub  10030  elnn0z  10052  xlemul1a  10624  om2uzlti  11029  om2uzlt2i  11030  sqlecan  11225  discr  11254  facdiv  11316  facwordi  11318  resqrex  11752  sqr2irr  12543  efgsfo  15064  efgred  15073  itg2mulc  19118  itgabs  19205  dgrlt  19663  sinq12ge0  19892  sineq0  19905  cxpge0  20046  cxplea  20059  cxple2  20060  cxple2a  20062  cxpcn3lem  20103  cxpcn3  20104  cxpaddlelem  20107  cxpaddle  20108  ang180lem3  20125  atanlogaddlem  20225  rlimcnp2  20277  jensen  20299  amgm  20301  htthlem  21513  hiidge0  21693  staddi  22842  stadd3i  22844  itgaddnclem2  25010  itgabsnc  25020  pellfund14gap  27075  rfcnnnub  27810  fmul01lt1lem2  27818  wallispilem3  27919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-pre-lttri 8827
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889
  Copyright terms: Public domain W3C validator