MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2 Structured version   Unicode version

Theorem lemul2 9894
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
Assertion
Ref Expression
lemul2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )

Proof of Theorem lemul2
StepHypRef Expression
1 lemul1 9893 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
2 recn 9111 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
3 recn 9111 . . . . . 6  |-  ( C  e.  RR  ->  C  e.  CC )
4 mulcom 9107 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
52, 3, 4syl2an 465 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
653adant2 977 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C )  =  ( C  x.  A ) )
7 recn 9111 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
8 mulcom 9107 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
97, 3, 8syl2an 465 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 976 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  =  ( C  x.  B ) )
116, 10breq12d 4250 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <_  ( B  x.  C )  <->  ( C  x.  A )  <_  ( C  x.  B )
) )
12113adant3r 1182 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <_  ( B  x.  C )  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
131, 12bitrd 246 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   class class class wbr 4237  (class class class)co 6110   CCcc 9019   RRcr 9020   0cc0 9021    x. cmul 9026    < clt 9151    <_ cle 9152
This theorem is referenced by:  lediv2  9931  lemul2i  9965  lemul2d  10719  nnlesq  11515  sqrlem6  12084  sqrlem7  12085  climcndslem2  12661  climcnds  12662  qexpz  13301  vdwlem3  13382  vdwlem9  13388  iihalf2  18989  tchcphlem1  19223  minveclem2  19358  itg2monolem1  19671  itg2monolem3  19673  itgabs  19755  abelthlem2  20379  pilem2  20399  logdivlti  20546  atans2  20802  leibpi  20813  log2tlbnd  20816  jensenlem2  20857  basellem1  20894  basellem2  20895  basellem3  20896  chtub  21027  logfaclbnd  21037  bpos1lem  21097  bposlem2  21100  bposlem3  21101  bposlem4  21102  bposlem5  21103  bposlem6  21104  lgsquadlem1  21169  chebbnd1lem1  21194  chebbnd1lem3  21196  dchrisumlem1  21214  dchrisum0lem3  21244  mulog2sumlem1  21259  mulog2sumlem2  21260  chpdifbndlem1  21278  pntlemj  21328  pntlemo  21332  ostth2lem2  21359  ostth2lem3  21360  ostth3  21363  minvecolem2  22408  cdj3lem1  23968  zetacvg  24830  subfaclim  24905  itgabsnc  26312  fzmul  26482  csbrn  26494  trirn  26495  bfp  26571  irrapxlem1  26923  irrapxlem3  26925  pellfundex  26987  jm2.17b  27064  jm2.17c  27065  stoweidlem11  27774  stoweidlem26  27789  stoweidlem38  27801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-po 4532  df-so 4533  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-riota 6578  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325
  Copyright terms: Public domain W3C validator