![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > HSE Home > Th. List > leoptri | Unicode version |
Description: The positive operator ordering relation satisfies trichotomy. Exercise 1(iii) of [Retherford] p. 49. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leoptri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leop2 23588 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | leop2 23588 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ancoms 440 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | anbi12d 692 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | hmopre 23387 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | adantlr 696 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | hmopre 23387 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | adantll 695 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | letri3d 9179 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | ralbidva 2690 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | r19.26 2806 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | syl6rbb 254 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | hmoplin 23406 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | hmoplin 23406 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | lnopeq 23473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 13, 14, 15 | syl2an 464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 4, 12, 16 | 3bitrd 271 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 ax-rep 4288 ax-sep 4298 ax-nul 4306 ax-pow 4345 ax-pr 4371 ax-un 4668 ax-inf2 7560 ax-cc 8279 ax-cnex 9010 ax-resscn 9011 ax-1cn 9012 ax-icn 9013 ax-addcl 9014 ax-addrcl 9015 ax-mulcl 9016 ax-mulrcl 9017 ax-mulcom 9018 ax-addass 9019 ax-mulass 9020 ax-distr 9021 ax-i2m1 9022 ax-1ne0 9023 ax-1rid 9024 ax-rnegex 9025 ax-rrecex 9026 ax-cnre 9027 ax-pre-lttri 9028 ax-pre-lttrn 9029 ax-pre-ltadd 9030 ax-pre-mulgt0 9031 ax-pre-sup 9032 ax-addf 9033 ax-mulf 9034 ax-hilex 22463 ax-hfvadd 22464 ax-hvcom 22465 ax-hvass 22466 ax-hv0cl 22467 ax-hvaddid 22468 ax-hfvmul 22469 ax-hvmulid 22470 ax-hvmulass 22471 ax-hvdistr1 22472 ax-hvdistr2 22473 ax-hvmul0 22474 ax-hfi 22542 ax-his1 22545 ax-his2 22546 ax-his3 22547 ax-his4 22548 ax-hcompl 22665 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ne 2577 df-nel 2578 df-ral 2679 df-rex 2680 df-reu 2681 df-rmo 2682 df-rab 2683 df-v 2926 df-sbc 3130 df-csb 3220 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-pss 3304 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-tp 3790 df-op 3791 df-uni 3984 df-int 4019 df-iun 4063 df-iin 4064 df-br 4181 df-opab 4235 df-mpt 4236 df-tr 4271 df-eprel 4462 df-id 4466 df-po 4471 df-so 4472 df-fr 4509 df-se 4510 df-we 4511 df-ord 4552 df-on 4553 df-lim 4554 df-suc 4555 df-om 4813 df-xp 4851 df-rel 4852 df-cnv 4853 df-co 4854 df-dm 4855 df-rn 4856 df-res 4857 df-ima 4858 df-iota 5385 df-fun 5423 df-fn 5424 df-f 5425 df-f1 5426 df-fo 5427 df-f1o 5428 df-fv 5429 df-isom 5430 df-ov 6051 df-oprab 6052 df-mpt2 6053 df-of 6272 df-1st 6316 df-2nd 6317 df-riota 6516 df-recs 6600 df-rdg 6635 df-1o 6691 df-2o 6692 df-oadd 6695 df-omul 6696 df-er 6872 df-map 6987 df-pm 6988 df-ixp 7031 df-en 7077 df-dom 7078 df-sdom 7079 df-fin 7080 df-fi 7382 df-sup 7412 df-oi 7443 df-card 7790 df-acn 7793 df-cda 8012 df-pnf 9086 df-mnf 9087 df-xr 9088 df-ltxr 9089 df-le 9090 df-sub 9257 df-neg 9258 df-div 9642 df-nn 9965 df-2 10022 df-3 10023 df-4 10024 df-5 10025 df-6 10026 df-7 10027 df-8 10028 df-9 10029 df-10 10030 df-n0 10186 df-z 10247 df-dec 10347 df-uz 10453 df-q 10539 df-rp 10577 df-xneg 10674 df-xadd 10675 df-xmul 10676 df-ioo 10884 df-ico 10886 df-icc 10887 df-fz 11008 df-fzo 11099 df-fl 11165 df-seq 11287 df-exp 11346 df-hash 11582 df-cj 11867 df-re 11868 df-im 11869 df-sqr 12003 df-abs 12004 df-clim 12245 df-rlim 12246 df-sum 12443 df-struct 13434 df-ndx 13435 df-slot 13436 df-base 13437 df-sets 13438 df-ress 13439 df-plusg 13505 df-mulr 13506 df-starv 13507 df-sca 13508 df-vsca 13509 df-tset 13511 df-ple 13512 df-ds 13514 df-unif 13515 df-hom 13516 df-cco 13517 df-rest 13613 df-topn 13614 df-topgen 13630 df-pt 13631 df-prds 13634 df-xrs 13689 df-0g 13690 df-gsum 13691 df-qtop 13696 df-imas 13697 df-xps 13699 df-mre 13774 df-mrc 13775 df-acs 13777 df-mnd 14653 df-submnd 14702 df-mulg 14778 df-cntz 15079 df-cmn 15377 df-psmet 16657 df-xmet 16658 df-met 16659 df-bl 16660 df-mopn 16661 df-fbas 16662 df-fg 16663 df-cnfld 16667 df-top 16926 df-bases 16928 df-topon 16929 df-topsp 16930 df-cld 17046 df-ntr 17047 df-cls 17048 df-nei 17125 df-cn 17253 df-cnp 17254 df-lm 17255 df-haus 17341 df-tx 17555 df-hmeo 17748 df-fil 17839 df-fm 17931 df-flim 17932 df-flf 17933 df-xms 18311 df-ms 18312 df-tms 18313 df-cfil 19169 df-cau 19170 df-cmet 19171 df-grpo 21740 df-gid 21741 df-ginv 21742 df-gdiv 21743 df-ablo 21831 df-subgo 21851 df-vc 21986 df-nv 22032 df-va 22035 df-ba 22036 df-sm 22037 df-0v 22038 df-vs 22039 df-nmcv 22040 df-ims 22041 df-dip 22158 df-ssp 22182 df-ph 22275 df-cbn 22326 df-hnorm 22432 df-hba 22433 df-hvsub 22435 df-hlim 22436 df-hcau 22437 df-sh 22670 df-ch 22685 df-oc 22715 df-ch0 22716 df-shs 22771 df-pjh 22858 df-hosum 23194 df-homul 23195 df-hodif 23196 df-h0op 23212 df-lnop 23305 df-hmop 23308 df-leop 23316 |
Copyright terms: Public domain | W3C validator |