MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leord2 Structured version   Unicode version

Theorem leord2 9557
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord2.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
Assertion
Ref Expression
leord2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <_  D  <->  N  <_  M ) )
Distinct variable groups:    x, B    x, y, C    x, D, y    x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem leord2
StepHypRef Expression
1 ltord.1 . . . 4  |-  ( x  =  y  ->  A  =  B )
21negeqd 9300 . . 3  |-  ( x  =  y  ->  -u A  =  -u B )
3 ltord.2 . . . 4  |-  ( x  =  C  ->  A  =  M )
43negeqd 9300 . . 3  |-  ( x  =  C  ->  -u A  =  -u M )
5 ltord.3 . . . 4  |-  ( x  =  D  ->  A  =  N )
65negeqd 9300 . . 3  |-  ( x  =  D  ->  -u A  =  -u N )
7 ltord.4 . . 3  |-  S  C_  RR
8 ltord.5 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
98renegcld 9464 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  -u A  e.  RR )
10 ltord2.6 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
118ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
121eleq1d 2502 . . . . . . . 8  |-  ( x  =  y  ->  ( A  e.  RR  <->  B  e.  RR ) )
1312rspccva 3051 . . . . . . 7  |-  ( ( A. x  e.  S  A  e.  RR  /\  y  e.  S )  ->  B  e.  RR )
1411, 13sylan 458 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  B  e.  RR )
1514adantrl 697 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  B  e.  RR )
168adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A  e.  RR )
17 ltneg 9528 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  -u A  <  -u B
) )
1815, 16, 17syl2anc 643 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( B  <  A  <->  -u A  <  -u B
) )
1910, 18sylibd 206 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  -> 
-u A  <  -u B
) )
202, 4, 6, 7, 9, 19leord1 9554 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <_  D  <->  -u M  <_  -u N ) )
215eleq1d 2502 . . . . . 6  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
2221rspccva 3051 . . . . 5  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
2311, 22sylan 458 . . . 4  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
2423adantrl 697 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
253eleq1d 2502 . . . . . 6  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2625rspccva 3051 . . . . 5  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2711, 26sylan 458 . . . 4  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2827adantrr 698 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
29 leneg 9531 . . 3  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  <_  M  <->  -u M  <_  -u N ) )
3024, 28, 29syl2anc 643 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( N  <_  M  <->  -u M  <_  -u N ) )
3120, 30bitr4d 248 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <_  D  <->  N  <_  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    C_ wss 3320   class class class wbr 4212   RRcr 8989    < clt 9120    <_ cle 9121   -ucneg 9292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294
  Copyright terms: Public domain W3C validator