MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Unicode version

Theorem leordtval 17200
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] 
+oo ) )
leordtval.2  |-  B  =  ran  ( x  e. 
RR*  |->  (  -oo [,) x ) )
leordtval.3  |-  C  =  ran  (,)
Assertion
Ref Expression
leordtval  |-  (ordTop `  <_  )  =  ( topGen `  ( ( A  u.  B )  u.  C
) )

Proof of Theorem leordtval
Dummy variables  a 
b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] 
+oo ) )
2 leordtval.2 . . 3  |-  B  =  ran  ( x  e. 
RR*  |->  (  -oo [,) x ) )
31, 2leordtval2 17199 . 2  |-  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( A  u.  B )
) )
4 letsr 14600 . . . 4  |-  <_  e.  TosetRel
5 ledm 14597 . . . . 5  |-  RR*  =  dom  <_
61leordtvallem1 17197 . . . . 5  |-  A  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
71, 2leordtvallem2 17198 . . . . 5  |-  B  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
8 leordtval.3 . . . . . 6  |-  C  =  ran  (,)
9 df-ioo 10853 . . . . . . . 8  |-  (,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  (
a  <  y  /\  y  <  b ) } )
10 xrltnle 9078 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  y  e.  RR* )  ->  (
a  <  y  <->  -.  y  <_  a ) )
1110adantlr 696 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( a  <  y  <->  -.  y  <_  a )
)
12 xrltnle 9078 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR*  /\  b  e.  RR* )  ->  (
y  <  b  <->  -.  b  <_  y ) )
1312ancoms 440 . . . . . . . . . . . 12  |-  ( ( b  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  b  <->  -.  b  <_  y ) )
1413adantll 695 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( y  <  b  <->  -.  b  <_  y )
)
1511, 14anbi12d 692 . . . . . . . . . 10  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( ( a  < 
y  /\  y  <  b )  <->  ( -.  y  <_  a  /\  -.  b  <_  y ) ) )
1615rabbidva 2891 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  { y  e.  RR*  |  (
a  <  y  /\  y  <  b ) }  =  { y  e. 
RR*  |  ( -.  y  <_  a  /\  -.  b  <_  y ) } )
1716mpt2eq3ia 6079 . . . . . . . 8  |-  ( a  e.  RR* ,  b  e. 
RR*  |->  { y  e. 
RR*  |  ( a  <  y  /\  y  < 
b ) } )  =  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
189, 17eqtri 2408 . . . . . . 7  |-  (,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_  a  /\  -.  b  <_  y ) } )
1918rneqi 5037 . . . . . 6  |-  ran  (,)  =  ran  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
208, 19eqtri 2408 . . . . 5  |-  C  =  ran  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
215, 6, 7, 20ordtbas2 17178 . . . 4  |-  (  <_  e. 
TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
224, 21ax-mp 8 . . 3  |-  ( fi
`  ( A  u.  B ) )  =  ( ( A  u.  B )  u.  C
)
2322fveq2i 5672 . 2  |-  ( topGen `  ( fi `  ( A  u.  B )
) )  =  (
topGen `  ( ( A  u.  B )  u.  C ) )
243, 23eqtri 2408 1  |-  (ordTop `  <_  )  =  ( topGen `  ( ( A  u.  B )  u.  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2654    u. cun 3262   class class class wbr 4154    e. cmpt 4208   ran crn 4820   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   ficfi 7351    +oocpnf 9051    -oocmnf 9052   RR*cxr 9053    < clt 9054    <_ cle 9055   (,)cioo 10849   (,]cioc 10850   [,)cico 10851   topGenctg 13593  ordTopcordt 13649    TosetRel ctsr 14553
This theorem is referenced by:  iocpnfordt  17202  icomnfordt  17203  iooordt  17204  pnfnei  17207  mnfnei  17208  xrtgioo  18709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-topgen 13595  df-ordt 13653  df-ps 14557  df-tsr 14558  df-top 16887  df-bases 16889
  Copyright terms: Public domain W3C validator