MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtvallem2 Unicode version

Theorem leordtvallem2 16941
Description: Lemma for leordtval 16943. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] 
+oo ) )
leordtval.2  |-  B  =  ran  ( x  e. 
RR*  |->  (  -oo [,) x ) )
Assertion
Ref Expression
leordtvallem2  |-  B  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)

Proof of Theorem leordtvallem2
StepHypRef Expression
1 leordtval.2 . 2  |-  B  =  ran  ( x  e. 
RR*  |->  (  -oo [,) x ) )
2 icossxr 10734 . . . . . 6  |-  (  -oo [,) x )  C_  RR*
3 dfss1 3373 . . . . . 6  |-  ( ( 
-oo [,) x )  C_  RR*  <->  (
RR*  i^i  (  -oo [,) x ) )  =  (  -oo [,) x
) )
42, 3mpbi 199 . . . . 5  |-  ( RR*  i^i  (  -oo [,) x
) )  =  ( 
-oo [,) x )
5 mnfxr 10456 . . . . . . . 8  |-  -oo  e.  RR*
6 simpl 443 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  x  e.  RR* )
7 elico1 10699 . . . . . . . 8  |-  ( ( 
-oo  e.  RR*  /\  x  e.  RR* )  ->  (
y  e.  (  -oo [,) x )  <->  ( y  e.  RR*  /\  -oo  <_  y  /\  y  <  x
) ) )
85, 6, 7sylancr 644 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  (  -oo [,) x )  <->  ( y  e.  RR*  /\  -oo  <_  y  /\  y  <  x
) ) )
9 simpr 447 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  y  e.  RR* )
10 mnfle 10470 . . . . . . . . . . 11  |-  ( y  e.  RR*  ->  -oo  <_  y )
1110adantl 452 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  -oo  <_  y )
129, 11jca 518 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  RR*  /\  -oo  <_  y ) )
1312biantrurd 494 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  x  <->  ( (
y  e.  RR*  /\  -oo  <_  y )  /\  y  <  x ) ) )
14 df-3an 936 . . . . . . . 8  |-  ( ( y  e.  RR*  /\  -oo  <_  y  /\  y  < 
x )  <->  ( (
y  e.  RR*  /\  -oo  <_  y )  /\  y  <  x ) )
1513, 14syl6bbr 254 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  x  <->  ( y  e.  RR*  /\  -oo  <_  y  /\  y  <  x
) ) )
16 xrltnle 8891 . . . . . . . 8  |-  ( ( y  e.  RR*  /\  x  e.  RR* )  ->  (
y  <  x  <->  -.  x  <_  y ) )
1716ancoms 439 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  x  <->  -.  x  <_  y ) )
188, 15, 173bitr2d 272 . . . . . 6  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
y  e.  (  -oo [,) x )  <->  -.  x  <_  y ) )
1918rabbi2dva 3377 . . . . 5  |-  ( x  e.  RR*  ->  ( RR*  i^i  (  -oo [,) x
) )  =  {
y  e.  RR*  |  -.  x  <_  y } )
204, 19syl5eqr 2329 . . . 4  |-  ( x  e.  RR*  ->  (  -oo [,) x )  =  {
y  e.  RR*  |  -.  x  <_  y } )
2120mpteq2ia 4102 . . 3  |-  ( x  e.  RR*  |->  (  -oo [,) x ) )  =  ( x  e.  RR*  |->  { y  e.  RR*  |  -.  x  <_  y } )
2221rneqi 4905 . 2  |-  ran  (
x  e.  RR*  |->  (  -oo [,) x ) )  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
231, 22eqtri 2303 1  |-  B  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {crab 2547    i^i cin 3151    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ran crn 4690  (class class class)co 5858    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    < clt 8867    <_ cle 8868   (,]cioc 10657   [,)cico 10658
This theorem is referenced by:  leordtval2  16942  leordtval  16943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-ico 10662
  Copyright terms: Public domain W3C validator