Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Unicode version

Theorem lerelxr 9143
 Description: 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 9128 . 2
2 difss 3476 . 2
31, 2eqsstri 3380 1
 Colors of variables: wff set class Syntax hints:   cdif 3319   wss 3322   cxp 4878  ccnv 4879  cxr 9121   clt 9122   cle 9123 This theorem is referenced by:  lerel  9144  dfle2  10742  dflt2  10743  ledm  14671  lern  14672  letsr  14674  xrsle  16723  znle  16819 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-le 9128
 Copyright terms: Public domain W3C validator