MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub0 Unicode version

Theorem lesub0 9306
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  B  <_  ( B  -  A )
)  <->  A  =  0
) )

Proof of Theorem lesub0
StepHypRef Expression
1 0re 8854 . . . 4  |-  0  e.  RR
21a1i 10 . . 3  |-  ( B  e.  RR  ->  0  e.  RR )
3 letri3 8923 . . 3  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <-> 
( A  <_  0  /\  0  <_  A ) ) )
42, 3sylan2 460 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  0  <-> 
( A  <_  0  /\  0  <_  A ) ) )
5 ancom 437 . . 3  |-  ( ( A  <_  0  /\  0  <_  A )  <->  ( 0  <_  A  /\  A  <_  0 ) )
6 simpr 447 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  A  e.  RR )
71a1i 10 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  0  e.  RR )
8 simpl 443 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  e.  RR )
9 lesub2 9285 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR  /\  B  e.  RR )  ->  ( A  <_  0  <->  ( B  -  0 )  <_ 
( B  -  A
) ) )
106, 7, 8, 9syl3anc 1182 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  <_  0  <->  ( B  -  0 )  <_  ( B  -  A ) ) )
118recnd 8877 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  B  e.  CC )
1211subid1d 9162 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  0 )  =  B )
1312breq1d 4049 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( B  - 
0 )  <_  ( B  -  A )  <->  B  <_  ( B  -  A ) ) )
1410, 13bitrd 244 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( A  <_  0  <->  B  <_  ( B  -  A ) ) )
1514ancoms 439 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  0  <->  B  <_  ( B  -  A ) ) )
1615anbi2d 684 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <_  0
)  <->  ( 0  <_  A  /\  B  <_  ( B  -  A )
) ) )
175, 16syl5bb 248 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_ 
0  /\  0  <_  A )  <->  ( 0  <_  A  /\  B  <_  ( B  -  A )
) ) )
184, 17bitr2d 245 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  B  <_  ( B  -  A )
)  <->  A  =  0
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   0cc0 8753    <_ cle 8884    - cmin 9053
This theorem is referenced by:  lesub0i  9337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056
  Copyright terms: Public domain W3C validator