MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub2 Structured version   Unicode version

Theorem lesub2 9523
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )

Proof of Theorem lesub2
StepHypRef Expression
1 leadd2 9497 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B )
) )
2 simp3 959 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 simp1 957 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
42, 3readdcld 9115 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  +  A )  e.  RR )
5 simp2 958 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
6 lesubadd 9500 . . . 4  |-  ( ( ( C  +  A
)  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
74, 5, 2, 6syl3anc 1184 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
82recnd 9114 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
93recnd 9114 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
105recnd 9114 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
118, 9, 10addsubd 9432 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  -  B )  =  ( ( C  -  B )  +  A ) )
1211breq1d 4222 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( ( C  -  B )  +  A )  <_  C
) )
131, 7, 123bitr2d 273 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( ( C  -  B )  +  A )  <_  C
) )
142, 5resubcld 9465 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  -  B )  e.  RR )
15 leaddsub 9504 . . 3  |-  ( ( ( C  -  B
)  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1614, 3, 2, 15syl3anc 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1713, 16bitrd 245 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    e. wcel 1725   class class class wbr 4212  (class class class)co 6081   RRcr 8989    + caddc 8993    <_ cle 9121    - cmin 9291
This theorem is referenced by:  ltsub2  9525  le2sub  9527  leneg  9531  lesub0  9544  lesub2d  9634  sinord  20436
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294
  Copyright terms: Public domain W3C validator