MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letri3 Structured version   Unicode version

Theorem letri3 9160
Description: Trichotomy law. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 9158 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
2 ancom 438 . . 3  |-  ( ( -.  B  <  A  /\  -.  A  <  B
)  <->  ( -.  A  <  B  /\  -.  B  <  A ) )
31, 2syl6bbr 255 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  B  < 
A  /\  -.  A  <  B ) ) )
4 lenlt 9154 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 lenlt 9154 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
65ancoms 440 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
74, 6anbi12d 692 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  A
)  <->  ( -.  B  <  A  /\  -.  A  <  B ) ) )
83, 7bitr4d 248 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4212   RRcr 8989    < clt 9120    <_ cle 9121
This theorem is referenced by:  eqlelt  9162  eqlei  9183  eqlei2  9184  letri3i  9189  letri3d  9215  lesub0  9544  eqord1  9555  lbreu  9958  nnle1eq1  10028  nn0le0eq0  10250  nn0lt10b  10336  zextle  10343  uz11  10508  uzin  10518  uzwo  10539  uzwoOLD  10540  qsqueeze  10787  elfz1eq  11068  faclbnd4lem4  11587  sqeqd  11971  max0add  12115  fsum00  12577  reef11  12720  dvdseq  12897  nn0seqcvgd  13061  infpnlem1  13278  psrbaglesupp  16433  gzrngunit  16764  nmoeq0  18770  oprpiece1res2  18977  pcoval2  19041  minveclem7  19336  pjthlem1  19338  iblposlem  19683  dvferm  19872  dveq0  19884  dv11cn  19885  fta1blem  20091  dgrco  20193  aalioulem3  20251  logf1o2  20541  cxpsqrlem  20593  ang180lem3  20653  chpeq0  20992  chteq0  20993  lgsdir  21114  lgsabs1  21118  minvecolem7  22385  pjhthlem1  22893  pjnormssi  23671  hstles  23734  stge1i  23741  stle0i  23742  stlesi  23744  cdj3lem1  23937  derangen  24858  bfplem2  26532  bfp  26533  acongeq  27048  jm2.26lem3  27072  dvconstbi  27528  swrdccat3blem  28218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126
  Copyright terms: Public domain W3C validator