MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Unicode version

Theorem letsr 14448
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr  |-  <_  e.  TosetRel

Proof of Theorem letsr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 8979 . . 3  |-  Rel  <_
2 lerelxr 8978 . . . . . . . . . . 11  |-  <_  C_  ( RR*  X.  RR* )
32brel 4819 . . . . . . . . . 10  |-  ( x  <_  y  ->  (
x  e.  RR*  /\  y  e.  RR* ) )
43adantr 451 . . . . . . . . 9  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
( x  e.  RR*  /\  y  e.  RR* )
)
54simpld 445 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  ->  x  e.  RR* )
64simprd 449 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
y  e.  RR* )
72brel 4819 . . . . . . . . . 10  |-  ( y  <_  z  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
87simprd 449 . . . . . . . . 9  |-  ( y  <_  z  ->  z  e.  RR* )
98adantl 452 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
z  e.  RR* )
105, 6, 93jca 1132 . . . . . . 7  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
( x  e.  RR*  /\  y  e.  RR*  /\  z  e.  RR* ) )
11 xrletr 10581 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  z  e. 
RR* )  ->  (
( x  <_  y  /\  y  <_  z )  ->  x  <_  z
) )
1210, 11mpcom 32 . . . . . 6  |-  ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z )
1312ax-gen 1546 . . . . 5  |-  A. z
( ( x  <_ 
y  /\  y  <_  z )  ->  x  <_  z )
1413gen2 1547 . . . 4  |-  A. x A. y A. z ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z
)
15 cotr 5137 . . . 4  |-  ( (  <_  o.  <_  )  C_ 
<_ 
<-> 
A. x A. y A. z ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z ) )
1614, 15mpbir 200 . . 3  |-  (  <_  o.  <_  )  C_  <_
17 asymref 5141 . . . 4  |-  ( (  <_  i^i  `'  <_  )  =  (  _I  |`  U. U.  <_  )  <->  A. x  e.  U. U. 
<_  A. y ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
18 simpr 447 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  ( x  <_ 
y  /\  y  <_  x ) )
192brel 4819 . . . . . . . . . . . 12  |-  ( y  <_  x  ->  (
y  e.  RR*  /\  x  e.  RR* ) )
2019simpld 445 . . . . . . . . . . 11  |-  ( y  <_  x  ->  y  e.  RR* )
2120adantl 452 . . . . . . . . . 10  |-  ( ( x  <_  y  /\  y  <_  x )  -> 
y  e.  RR* )
22 xrletri3 10578 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  =  y  <->  ( x  <_  y  /\  y  <_  x ) ) )
2321, 22sylan2 460 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  ( x  =  y  <->  ( x  <_ 
y  /\  y  <_  x ) ) )
2418, 23mpbird 223 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  x  =  y )
2524ex 423 . . . . . . 7  |-  ( x  e.  RR*  ->  ( ( x  <_  y  /\  y  <_  x )  ->  x  =  y )
)
26 xrleid 10576 . . . . . . . . 9  |-  ( x  e.  RR*  ->  x  <_  x )
2726, 26jca 518 . . . . . . . 8  |-  ( x  e.  RR*  ->  ( x  <_  x  /\  x  <_  x ) )
28 breq2 4108 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  <_  x  <->  x  <_  y ) )
29 breq1 4107 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  <_  x  <->  y  <_  x ) )
3028, 29anbi12d 691 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  <_  x  /\  x  <_  x )  <-> 
( x  <_  y  /\  y  <_  x ) ) )
3127, 30syl5ibcom 211 . . . . . . 7  |-  ( x  e.  RR*  ->  ( x  =  y  ->  (
x  <_  y  /\  y  <_  x ) ) )
3225, 31impbid 183 . . . . . 6  |-  ( x  e.  RR*  ->  ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
3332alrimiv 1631 . . . . 5  |-  ( x  e.  RR*  ->  A. y
( ( x  <_ 
y  /\  y  <_  x )  <->  x  =  y
) )
34 lefld 14447 . . . . . 6  |-  RR*  =  U. U.  <_
3534eqcomi 2362 . . . . 5  |-  U. U.  <_  =  RR*
3633, 35eleq2s 2450 . . . 4  |-  ( x  e.  U. U.  <_  ->  A. y ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
3717, 36mprgbir 2689 . . 3  |-  (  <_  i^i  `'  <_  )  =  (  _I  |`  U. U.  <_  )
38 xrex 10443 . . . . . 6  |-  RR*  e.  _V
3938, 38xpex 4883 . . . . 5  |-  ( RR*  X. 
RR* )  e.  _V
4039, 2ssexi 4240 . . . 4  |-  <_  e.  _V
41 isps 14410 . . . 4  |-  (  <_  e.  _V  ->  (  <_  e.  PosetRel  <->  ( Rel  <_  /\  (  <_  o.  <_  )  C_  <_  /\  (  <_  i^i  `' 
<_  )  =  (  _I  |`  U. U.  <_  ) ) ) )
4240, 41ax-mp 8 . . 3  |-  (  <_  e. 
PosetRel  <-> 
( Rel  <_  /\  (  <_  o.  <_  )  C_  <_  /\  (  <_  i^i  `' 
<_  )  =  (  _I  |`  U. U.  <_  ) ) )
431, 16, 37, 42mpbir3an 1134 . 2  |-  <_  e.  PosetRel
44 xrletri 10577 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <_  y  \/  y  <_  x ) )
4544rgen2a 2685 . . 3  |-  A. x  e.  RR*  A. y  e. 
RR*  ( x  <_ 
y  \/  y  <_  x )
46 qfto 5146 . . 3  |-  ( (
RR*  X.  RR* )  C_  (  <_  u.  `'  <_  )  <->  A. x  e.  RR*  A. y  e.  RR*  ( x  <_ 
y  \/  y  <_  x ) )
4745, 46mpbir 200 . 2  |-  ( RR*  X. 
RR* )  C_  (  <_  u.  `'  <_  )
48 ledm 14445 . . 3  |-  RR*  =  dom  <_
4948istsr 14425 . 2  |-  (  <_  e. 
TosetRel  <-> 
(  <_  e.  PosetRel  /\  ( RR*  X.  RR* )  C_  (  <_  u.  `'  <_  )
) )
5043, 47, 49mpbir2an 886 1  |-  <_  e.  TosetRel
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1540    = wceq 1642    e. wcel 1710   A.wral 2619   _Vcvv 2864    u. cun 3226    i^i cin 3227    C_ wss 3228   U.cuni 3908   class class class wbr 4104    _I cid 4386    X. cxp 4769   `'ccnv 4770    |` cres 4773    o. ccom 4775   Rel wrel 4776   RR*cxr 8956    <_ cle 8958   PosetRelcps 14400    TosetRel ctsr 14401
This theorem is referenced by:  cnfldle  16491  letopon  17041  leordtval2  17048  leordtval  17049  iccordt  17050  ordtrestixx  17058  xrge0tsms  18442  icopnfhmeo  18545  iccpnfhmeo  18547  xrhmeo  18548  xrhaus  23329  xrge0tsmsd  23415  cnvordtrestixx  23467  xrmulc1cn  23472  xrge0iifhmeo  23478  xrge0haus  23486
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-pre-lttri 8901  ax-pre-lttrn 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-po 4396  df-so 4397  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-ps 14405  df-tsr 14406
  Copyright terms: Public domain W3C validator