Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfinpfin Unicode version

Theorem lfinpfin 26406
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)

Proof of Theorem lfinpfin
Dummy variables  n  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . . . 8  |-  U. J  =  U. J
2 eqid 2296 . . . . . . . 8  |-  U. A  =  U. A
31, 2locfinbas 26404 . . . . . . 7  |-  ( A  e.  ( LocFin `  J
)  ->  U. J  = 
U. A )
43eleq2d 2363 . . . . . 6  |-  ( A  e.  ( LocFin `  J
)  ->  ( x  e.  U. J  <->  x  e.  U. A ) )
54biimpar 471 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  x  e.  U. J )
61locfinnei 26405 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. J )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
75, 6syldan 456 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
8 inelcm 3522 . . . . . . . . . 10  |-  ( ( x  e.  s  /\  x  e.  n )  ->  ( s  i^i  n
)  =/=  (/) )
98expcom 424 . . . . . . . . 9  |-  ( x  e.  n  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
109ad2antlr 707 . . . . . . . 8  |-  ( ( ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A
)  /\  x  e.  n )  /\  s  e.  A )  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
1110ss2rabdv 3267 . . . . . . 7  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )
12 ssfi 7099 . . . . . . . 8  |-  ( ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  /\  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1312expcom 424 . . . . . . 7  |-  ( { s  e.  A  |  x  e.  s }  C_ 
{ s  e.  A  |  ( s  i^i  n )  =/=  (/) }  ->  ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1411, 13syl 15 . . . . . 6  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  ( {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1514expimpd 586 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1615rexlimdvw 2683 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
177, 16mpd 14 . . 3  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1817ralrimiva 2639 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
192isptfin 26398 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  ( A  e.  PtFin 
<-> 
A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
)
2018, 19mpbird 223 1  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    i^i cin 3164    C_ wss 3165   (/)c0 3468   U.cuni 3843   ` cfv 5271   Fincfn 6879   PtFincptfin 26364   LocFinclocfin 26365
This theorem is referenced by:  locfindis  26408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-fin 6883  df-top 16652  df-ptfin 26368  df-locfin 26369
  Copyright terms: Public domain W3C validator