Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Unicode version

Theorem lfl0f 29929
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d  |-  D  =  (Scalar `  W )
lfl0f.o  |-  .0.  =  ( 0g `  D )
lfl0f.v  |-  V  =  ( Base `  W
)
lfl0f.f  |-  F  =  (LFnl `  W )
Assertion
Ref Expression
lfl0f  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  F )

Proof of Theorem lfl0f
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5  |-  .0.  =  ( 0g `  D )
2 fvex 5744 . . . . 5  |-  ( 0g
`  D )  e. 
_V
31, 2eqeltri 2508 . . . 4  |-  .0.  e.  _V
43fconst 5631 . . 3  |-  ( V  X.  {  .0.  }
) : V --> {  .0.  }
5 lfl0f.d . . . . 5  |-  D  =  (Scalar `  W )
6 eqid 2438 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
75, 6, 1lmod0cl 15978 . . . 4  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  D )
)
87snssd 3945 . . 3  |-  ( W  e.  LMod  ->  {  .0.  } 
C_  ( Base `  D
) )
9 fss 5601 . . 3  |-  ( ( ( V  X.  {  .0.  } ) : V --> {  .0.  }  /\  {  .0.  }  C_  ( Base `  D ) )  -> 
( V  X.  {  .0.  } ) : V --> ( Base `  D )
)
104, 8, 9sylancr 646 . 2  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
) : V --> ( Base `  D ) )
115lmodrng 15960 . . . . . . . . 9  |-  ( W  e.  LMod  ->  D  e. 
Ring )
1211ad2antrr 708 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  D  e.  Ring )
13 simplrl 738 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  r  e.  ( Base `  D
) )
14 eqid 2438 . . . . . . . . 9  |-  ( .r
`  D )  =  ( .r `  D
)
156, 14, 1rngrz 15703 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  r  e.  ( Base `  D
) )  ->  (
r ( .r `  D )  .0.  )  =  .0.  )
1612, 13, 15syl2anc 644 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .r `  D )  .0.  )  =  .0.  )
1716oveq1d 6098 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D )  .0.  ) ( +g  `  D
)  .0.  )  =  (  .0.  ( +g  `  D )  .0.  )
)
18 rnggrp 15671 . . . . . . . 8  |-  ( D  e.  Ring  ->  D  e. 
Grp )
1912, 18syl 16 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  D  e.  Grp )
206, 1grpidcl 14835 . . . . . . . 8  |-  ( D  e.  Grp  ->  .0.  e.  ( Base `  D
) )
2119, 20syl 16 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  .0.  e.  ( Base `  D
) )
22 eqid 2438 . . . . . . . 8  |-  ( +g  `  D )  =  ( +g  `  D )
236, 22, 1grplid 14837 . . . . . . 7  |-  ( ( D  e.  Grp  /\  .0.  e.  ( Base `  D
) )  ->  (  .0.  ( +g  `  D
)  .0.  )  =  .0.  )
2419, 21, 23syl2anc 644 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (  .0.  ( +g  `  D
)  .0.  )  =  .0.  )
2517, 24eqtrd 2470 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D )  .0.  ) ( +g  `  D
)  .0.  )  =  .0.  )
26 simplrr 739 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  x  e.  V )
273fvconst2 5949 . . . . . . . 8  |-  ( x  e.  V  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2826, 27syl 16 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  x
)  =  .0.  )
2928oveq2d 6099 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .r `  D ) ( ( V  X.  {  .0.  } ) `  x ) )  =  ( r ( .r `  D
)  .0.  ) )
303fvconst2 5949 . . . . . . 7  |-  ( y  e.  V  ->  (
( V  X.  {  .0.  } ) `  y
)  =  .0.  )
3130adantl 454 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  y
)  =  .0.  )
3229, 31oveq12d 6101 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .r
`  D ) ( ( V  X.  {  .0.  } ) `  x
) ) ( +g  `  D ) ( ( V  X.  {  .0.  } ) `  y ) )  =  ( ( r ( .r `  D )  .0.  )
( +g  `  D )  .0.  ) )
33 simpll 732 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  W  e.  LMod )
34 lfl0f.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
35 eqid 2438 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
3634, 5, 35, 6lmodvscl 15969 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  D
)  /\  x  e.  V )  ->  (
r ( .s `  W ) x )  e.  V )
3733, 13, 26, 36syl3anc 1185 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
r ( .s `  W ) x )  e.  V )
38 simpr 449 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  y  e.  V )
39 eqid 2438 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
4034, 39lmodvacl 15966 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) x )  e.  V  /\  y  e.  V )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V )
4133, 37, 38, 40syl3anc 1185 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V )
423fvconst2 5949 . . . . . 6  |-  ( ( ( r ( .s
`  W ) x ) ( +g  `  W
) y )  e.  V  ->  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  .0.  )
4341, 42syl 16 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  (
( r ( .s
`  W ) x ) ( +g  `  W
) y ) )  =  .0.  )
4425, 32, 433eqtr4rd 2481 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( r  e.  (
Base `  D )  /\  x  e.  V
) )  /\  y  e.  V )  ->  (
( V  X.  {  .0.  } ) `  (
( r ( .s
`  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
4544ralrimiva 2791 . . 3  |-  ( ( W  e.  LMod  /\  (
r  e.  ( Base `  D )  /\  x  e.  V ) )  ->  A. y  e.  V  ( ( V  X.  {  .0.  } ) `  ( ( r ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( r ( .r `  D ) ( ( V  X.  {  .0.  } ) `  x ) ) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
4645ralrimivva 2800 . 2  |-  ( W  e.  LMod  ->  A. r  e.  ( Base `  D
) A. x  e.  V  A. y  e.  V  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) )
47 lfl0f.f . . 3  |-  F  =  (LFnl `  W )
4834, 39, 5, 35, 6, 22, 14, 47islfl 29920 . 2  |-  ( W  e.  LMod  ->  ( ( V  X.  {  .0.  } )  e.  F  <->  ( ( V  X.  {  .0.  }
) : V --> ( Base `  D )  /\  A. r  e.  ( Base `  D ) A. x  e.  V  A. y  e.  V  ( ( V  X.  {  .0.  }
) `  ( (
r ( .s `  W ) x ) ( +g  `  W
) y ) )  =  ( ( r ( .r `  D
) ( ( V  X.  {  .0.  }
) `  x )
) ( +g  `  D
) ( ( V  X.  {  .0.  }
) `  y )
) ) ) )
4910, 46, 48mpbir2and 890 1  |-  ( W  e.  LMod  ->  ( V  X.  {  .0.  }
)  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    C_ wss 3322   {csn 3816    X. cxp 4878   -->wf 5452   ` cfv 5456  (class class class)co 6083   Basecbs 13471   +g cplusg 13531   .rcmulr 13532  Scalarcsca 13534   .scvsca 13535   0gc0g 13725   Grpcgrp 14687   Ringcrg 15662   LModclmod 15952  LFnlclfn 29917
This theorem is referenced by:  lkr0f  29954  lkrscss  29958  ldualgrplem  30005  ldual0v  30010  ldual0vcl  30011  lclkrlem1  32366  lclkr  32393  lclkrs  32399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-plusg 13544  df-0g 13729  df-mnd 14692  df-grp 14814  df-mgp 15651  df-rng 15665  df-lmod 15954  df-lfl 29918
  Copyright terms: Public domain W3C validator