Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Unicode version

Theorem lfl1dim 29919
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v  |-  V  =  ( Base `  W
)
lfl1dim.d  |-  D  =  (Scalar `  W )
lfl1dim.f  |-  F  =  (LFnl `  W )
lfl1dim.l  |-  L  =  (LKer `  W )
lfl1dim.k  |-  K  =  ( Base `  D
)
lfl1dim.t  |-  .x.  =  ( .r `  D )
lfl1dim.w  |-  ( ph  ->  W  e.  LVec )
lfl1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lfl1dim  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
Distinct variable groups:    D, k    k, F    k, G    k, K    k, L    k, V    k, W    g, k, ph    .x. , k
Allowed substitution hints:    D( g)    .x. ( g)    F( g)    G( g)    K( g)    L( g)    V( g)    W( g)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 2714 . 2  |-  { g  e.  F  |  ( L `  G ) 
C_  ( L `  g ) }  =  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }
2 lfl1dim.w . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 16178 . . . . . . . . . . . 12  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LMod )
5 lfl1dim.d . . . . . . . . . . . 12  |-  D  =  (Scalar `  W )
6 lfl1dim.k . . . . . . . . . . . 12  |-  K  =  ( Base `  D
)
7 eqid 2436 . . . . . . . . . . . 12  |-  ( 0g
`  D )  =  ( 0g `  D
)
85, 6, 7lmod0cl 15976 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  ( 0g
`  D )  e.  K )
94, 8syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  D
)  e.  K )
109ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( 0g `  D )  e.  K
)
11 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
12 lfl1dim.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
13 lfl1dim.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
14 lfl1dim.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  D )
154ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  W  e.  LMod )
16 lfl1dim.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  F )
1716ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  G  e.  F )
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 29880 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
1911, 18eqtr4d 2471 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( G  o F  .x.  ( V  X.  {
( 0g `  D
) } ) ) )
20 sneq 3825 . . . . . . . . . . . . 13  |-  ( k  =  ( 0g `  D )  ->  { k }  =  { ( 0g `  D ) } )
2120xpeq2d 4902 . . . . . . . . . . . 12  |-  ( k  =  ( 0g `  D )  ->  ( V  X.  { k } )  =  ( V  X.  { ( 0g
`  D ) } ) )
2221oveq2d 6097 . . . . . . . . . . 11  |-  ( k  =  ( 0g `  D )  ->  ( G  o F  .x.  ( V  X.  { k } ) )  =  ( G  o F  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
2322eqeq2d 2447 . . . . . . . . . 10  |-  ( k  =  ( 0g `  D )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  g  =  ( G  o F  .x.  ( V  X.  {
( 0g `  D
) } ) ) ) )
2423rspcev 3052 . . . . . . . . 9  |-  ( ( ( 0g `  D
)  e.  K  /\  g  =  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )
2510, 19, 24syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
2625a1d 23 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
279ad3antrrr 711 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( 0g `  D )  e.  K )
28 lfl1dim.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
294ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  W  e.  LMod )
30 simpllr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  e.  F )
3112, 13, 28, 29, 30lkrssv 29894 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  C_  V )
324adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  W  e.  LMod )
3316adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  G  e.  F )
345, 7, 12, 13, 28lkr0f 29892 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3532, 33, 34syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3635biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( L `  G )  =  V )
3736sseq1d 3375 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  V  C_  ( L `
 g ) ) )
3837biimpa 471 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  V  C_  ( L `  g
) )
3931, 38eqssd 3365 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  =  V )
405, 7, 12, 13, 28lkr0f 29892 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  g  e.  F )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4129, 30, 40syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4239, 41mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
4316ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  G  e.  F )
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 29880 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
4542, 44eqtr4d 2471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( G  o F  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
4627, 45, 24syl2anc 643 . . . . . . . 8  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
4746ex 424 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
48 eqid 2436 . . . . . . . . 9  |-  (LSHyp `  W )  =  (LSHyp `  W )
492ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  W  e.  LVec )
5016ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  e.  F )
51 simprr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  =/=  ( V  X.  { ( 0g `  D ) } ) )
5212, 5, 7, 48, 13, 28lkrshp 29903 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
5349, 50, 51, 52syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
54 simplr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  e.  F )
55 simprl 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  =/=  ( V  X.  { ( 0g `  D ) } ) )
5612, 5, 7, 48, 13, 28lkrshp 29903 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  g  e.  F  /\  g  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5749, 54, 55, 56syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5848, 49, 53, 57lshpcmp 29786 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  =  ( L `  g ) ) )
592ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  W  e.  LVec )
6016ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  G  e.  F )
61 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  g  e.  F )
62 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  ( L `  G )  =  ( L `  g ) )
635, 6, 14, 12, 13, 28eqlkr2 29898 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  g  e.  F )  /\  ( L `  G
)  =  ( L `
 g ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )
6459, 60, 61, 62, 63syl121anc 1189 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
6564ex 424 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  =  ( L `  g )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
6658, 65sylbid 207 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
6726, 47, 66pm2.61da2ne 2683 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
682ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  W  e.  LVec )
6916ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  G  e.  F )
70 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  k  e.  K )
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 29896 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  ( L `  G )  C_  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
7271ex 424 . . . . . . . 8  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( L `  G
)  C_  ( L `  ( G  o F 
.x.  ( V  X.  { k } ) ) ) ) )
73 fveq2 5728 . . . . . . . . . 10  |-  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  g )  =  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
7473sseq2d 3376 . . . . . . . . 9  |-  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  C_  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
7574biimprcd 217 . . . . . . . 8  |-  ( ( L `  G ) 
C_  ( L `  ( G  o F  .x.  ( V  X.  {
k } ) ) )  ->  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g )
) )
7672, 75syl6 31 . . . . . . 7  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  -> 
( L `  G
)  C_  ( L `  g ) ) ) )
7776rexlimdv 2829 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  ( E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g
) ) )
7867, 77impbid 184 . . . . 5  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
7978pm5.32da 623 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) ) )
804adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  W  e.  LMod )
8116adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  G  e.  F )
82 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  k  e.  K )
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 29875 . . . . . . . 8  |-  ( (
ph  /\  k  e.  K )  ->  ( G  o F  .x.  ( V  X.  { k } ) )  e.  F
)
84 eleq1a 2505 . . . . . . . 8  |-  ( ( G  o F  .x.  ( V  X.  { k } ) )  e.  F  ->  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8583, 84syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8685pm4.71rd 617 . . . . . 6  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
8786rexbidva 2722 . . . . 5  |-  ( ph  ->  ( E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  E. k  e.  K  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
88 r19.42v 2862 . . . . 5  |-  ( E. k  e.  K  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
8987, 88syl6rbb 254 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
9079, 89bitrd 245 . . 3  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
9190abbidv 2550 . 2  |-  ( ph  ->  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
921, 91syl5eq 2480 1  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   E.wrex 2706   {crab 2709    C_ wss 3320   {csn 3814    X. cxp 4876   ` cfv 5454  (class class class)co 6081    o Fcof 6303   Basecbs 13469   .rcmulr 13530  Scalarcsca 13532   0gc0g 13723   LModclmod 15950   LVecclvec 16174  LSHypclsh 29773  LFnlclfn 29855  LKerclk 29883
This theorem is referenced by:  ldual1dim  29964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-0g 13727  df-mnd 14690  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-subg 14941  df-cntz 15116  df-lsm 15270  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-drng 15837  df-lmod 15952  df-lss 16009  df-lsp 16048  df-lvec 16175  df-lshyp 29775  df-lfl 29856  df-lkr 29884
  Copyright terms: Public domain W3C validator