Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Unicode version

Theorem lfl1dim 29311
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v  |-  V  =  ( Base `  W
)
lfl1dim.d  |-  D  =  (Scalar `  W )
lfl1dim.f  |-  F  =  (LFnl `  W )
lfl1dim.l  |-  L  =  (LKer `  W )
lfl1dim.k  |-  K  =  ( Base `  D
)
lfl1dim.t  |-  .x.  =  ( .r `  D )
lfl1dim.w  |-  ( ph  ->  W  e.  LVec )
lfl1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lfl1dim  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
Distinct variable groups:    D, k    k, F    k, G    k, K    k, L    k, V    k, W    g, k, ph    .x. , k
Allowed substitution hints:    D( g)    .x. ( g)    F( g)    G( g)    K( g)    L( g)    V( g)    W( g)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 2552 . 2  |-  { g  e.  F  |  ( L `  G ) 
C_  ( L `  g ) }  =  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }
2 lfl1dim.w . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 15859 . . . . . . . . . . . 12  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 15 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LMod )
5 lfl1dim.d . . . . . . . . . . . 12  |-  D  =  (Scalar `  W )
6 lfl1dim.k . . . . . . . . . . . 12  |-  K  =  ( Base `  D
)
7 eqid 2283 . . . . . . . . . . . 12  |-  ( 0g
`  D )  =  ( 0g `  D
)
85, 6, 7lmod0cl 15656 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  ( 0g
`  D )  e.  K )
94, 8syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  D
)  e.  K )
109ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( 0g `  D )  e.  K
)
11 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
12 lfl1dim.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
13 lfl1dim.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
14 lfl1dim.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  D )
154ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  W  e.  LMod )
16 lfl1dim.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  F )
1716ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  G  e.  F )
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 29272 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
1911, 18eqtr4d 2318 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( G  o F  .x.  ( V  X.  {
( 0g `  D
) } ) ) )
20 sneq 3651 . . . . . . . . . . . . 13  |-  ( k  =  ( 0g `  D )  ->  { k }  =  { ( 0g `  D ) } )
2120xpeq2d 4713 . . . . . . . . . . . 12  |-  ( k  =  ( 0g `  D )  ->  ( V  X.  { k } )  =  ( V  X.  { ( 0g
`  D ) } ) )
2221oveq2d 5874 . . . . . . . . . . 11  |-  ( k  =  ( 0g `  D )  ->  ( G  o F  .x.  ( V  X.  { k } ) )  =  ( G  o F  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
2322eqeq2d 2294 . . . . . . . . . 10  |-  ( k  =  ( 0g `  D )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  g  =  ( G  o F  .x.  ( V  X.  {
( 0g `  D
) } ) ) ) )
2423rspcev 2884 . . . . . . . . 9  |-  ( ( ( 0g `  D
)  e.  K  /\  g  =  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )
2510, 19, 24syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
2625a1d 22 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
279ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( 0g `  D )  e.  K )
28 lfl1dim.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
294ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  W  e.  LMod )
30 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  e.  F )
3112, 13, 28, 29, 30lkrssv 29286 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  C_  V )
324adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  W  e.  LMod )
3316adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  G  e.  F )
345, 7, 12, 13, 28lkr0f 29284 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3532, 33, 34syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3635biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( L `  G )  =  V )
3736sseq1d 3205 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  V  C_  ( L `
 g ) ) )
3837biimpa 470 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  V  C_  ( L `  g
) )
3931, 38eqssd 3196 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  =  V )
405, 7, 12, 13, 28lkr0f 29284 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  g  e.  F )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4129, 30, 40syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4239, 41mpbid 201 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
4316ad3antrrr 710 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  G  e.  F )
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 29272 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( G  o F  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
4542, 44eqtr4d 2318 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( G  o F  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
4627, 45, 24syl2anc 642 . . . . . . . 8  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
4746ex 423 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
48 eqid 2283 . . . . . . . . 9  |-  (LSHyp `  W )  =  (LSHyp `  W )
492ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  W  e.  LVec )
5016ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  e.  F )
51 simprr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  =/=  ( V  X.  { ( 0g `  D ) } ) )
5212, 5, 7, 48, 13, 28lkrshp 29295 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
5349, 50, 51, 52syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
54 simplr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  e.  F )
55 simprl 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  =/=  ( V  X.  { ( 0g `  D ) } ) )
5612, 5, 7, 48, 13, 28lkrshp 29295 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  g  e.  F  /\  g  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5749, 54, 55, 56syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5848, 49, 53, 57lshpcmp 29178 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  =  ( L `  g ) ) )
592ad3antrrr 710 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  W  e.  LVec )
6016ad3antrrr 710 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  G  e.  F )
61 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  g  e.  F )
62 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  ( L `  G )  =  ( L `  g ) )
635, 6, 14, 12, 13, 28eqlkr2 29290 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  g  e.  F )  /\  ( L `  G
)  =  ( L `
 g ) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )
6459, 60, 61, 62, 63syl121anc 1187 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )
6564ex 423 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  =  ( L `  g )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
6658, 65sylbid 206 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
6726, 47, 66pm2.61da2ne 2525 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  ->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
682ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  W  e.  LVec )
6916ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  G  e.  F )
70 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  k  e.  K )
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 29288 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  ( L `  G )  C_  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
7271ex 423 . . . . . . . 8  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( L `  G
)  C_  ( L `  ( G  o F 
.x.  ( V  X.  { k } ) ) ) ) )
73 fveq2 5525 . . . . . . . . . 10  |-  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  g )  =  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
7473sseq2d 3206 . . . . . . . . 9  |-  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  C_  ( L `  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
7574biimprcd 216 . . . . . . . 8  |-  ( ( L `  G ) 
C_  ( L `  ( G  o F  .x.  ( V  X.  {
k } ) ) )  ->  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g )
) )
7672, 75syl6 29 . . . . . . 7  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  -> 
( L `  G
)  C_  ( L `  g ) ) ) )
7776rexlimdv 2666 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  ( E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g
) ) )
7867, 77impbid 183 . . . . 5  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
7978pm5.32da 622 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) ) )
804adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  W  e.  LMod )
8116adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  G  e.  F )
82 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  k  e.  K )
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 29267 . . . . . . . 8  |-  ( (
ph  /\  k  e.  K )  ->  ( G  o F  .x.  ( V  X.  { k } ) )  e.  F
)
84 eleq1a 2352 . . . . . . . 8  |-  ( ( G  o F  .x.  ( V  X.  { k } ) )  e.  F  ->  ( g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8583, 84syl 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8685pm4.71rd 616 . . . . . 6  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
8786rexbidva 2560 . . . . 5  |-  ( ph  ->  ( E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) )  <->  E. k  e.  K  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) ) )
88 r19.42v 2694 . . . . 5  |-  ( E. k  e.  K  ( g  e.  F  /\  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) ) )
8987, 88syl6rbb 253 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  {
k } ) ) )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
9079, 89bitrd 244 . . 3  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) ) )
9190abbidv 2397 . 2  |-  ( ph  ->  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
921, 91syl5eq 2327 1  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  o F  .x.  ( V  X.  { k } ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   E.wrex 2544   {crab 2547    C_ wss 3152   {csn 3640    X. cxp 4687   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Basecbs 13148   .rcmulr 13209  Scalarcsca 13211   0gc0g 13400   LModclmod 15627   LVecclvec 15855  LSHypclsh 29165  LFnlclfn 29247  LKerclk 29275
This theorem is referenced by:  ldual1dim  29356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793  df-lsm 14947  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856  df-lshyp 29167  df-lfl 29248  df-lkr 29276
  Copyright terms: Public domain W3C validator