Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdcom Structured version   Unicode version

Theorem lfladdcom 29968
Description: Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r  |-  R  =  (Scalar `  W )
lfladdcl.p  |-  .+  =  ( +g  `  R )
lfladdcl.f  |-  F  =  (LFnl `  W )
lfladdcl.w  |-  ( ph  ->  W  e.  LMod )
lfladdcl.g  |-  ( ph  ->  G  e.  F )
lfladdcl.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lfladdcom  |-  ( ph  ->  ( G  o F 
.+  H )  =  ( H  o F 
.+  G ) )

Proof of Theorem lfladdcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5771 . . 3  |-  ( Base `  W )  e.  _V
21a1i 11 . 2  |-  ( ph  ->  ( Base `  W
)  e.  _V )
3 lfladdcl.w . . 3  |-  ( ph  ->  W  e.  LMod )
4 lfladdcl.g . . 3  |-  ( ph  ->  G  e.  F )
5 lfladdcl.r . . . 4  |-  R  =  (Scalar `  W )
6 eqid 2442 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
7 eqid 2442 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
8 lfladdcl.f . . . 4  |-  F  =  (LFnl `  W )
95, 6, 7, 8lflf 29959 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : ( Base `  W
) --> ( Base `  R
) )
103, 4, 9syl2anc 644 . 2  |-  ( ph  ->  G : ( Base `  W ) --> ( Base `  R ) )
11 lfladdcl.h . . 3  |-  ( ph  ->  H  e.  F )
125, 6, 7, 8lflf 29959 . . 3  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  H : ( Base `  W
) --> ( Base `  R
) )
133, 11, 12syl2anc 644 . 2  |-  ( ph  ->  H : ( Base `  W ) --> ( Base `  R ) )
145lmodrng 15989 . . . . 5  |-  ( W  e.  LMod  ->  R  e. 
Ring )
15 rngabl 15724 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Abel )
163, 14, 153syl 19 . . . 4  |-  ( ph  ->  R  e.  Abel )
1716adantr 453 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  R  e.  Abel )
18 simprl 734 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
19 simprr 735 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
20 lfladdcl.p . . . 4  |-  .+  =  ( +g  `  R )
216, 20ablcom 15460 . . 3  |-  ( ( R  e.  Abel  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
2217, 18, 19, 21syl3anc 1185 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x  .+  y )  =  ( y  .+  x ) )
232, 10, 13, 22caofcom 6365 1  |-  ( ph  ->  ( G  o F 
.+  H )  =  ( H  o F 
.+  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   _Vcvv 2962   -->wf 5479   ` cfv 5483  (class class class)co 6110    o Fcof 6332   Basecbs 13500   +g cplusg 13560  Scalarcsca 13563   Abelcabel 15444   Ringcrg 15691   LModclmod 15981  LFnlclfn 29953
This theorem is referenced by:  ldualvaddcom  30036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-plusg 13573  df-0g 13758  df-mnd 14721  df-grp 14843  df-minusg 14844  df-cmn 15445  df-abl 15446  df-mgp 15680  df-rng 15694  df-ur 15696  df-lmod 15983  df-lfl 29954
  Copyright terms: Public domain W3C validator