Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Unicode version

Theorem lflnegcl 29947
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 30018, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v  |-  V  =  ( Base `  W
)
lflnegcl.r  |-  R  =  (Scalar `  W )
lflnegcl.i  |-  I  =  ( inv g `  R )
lflnegcl.n  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
lflnegcl.f  |-  F  =  (LFnl `  W )
lflnegcl.w  |-  ( ph  ->  W  e.  LMod )
lflnegcl.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lflnegcl  |-  ( ph  ->  N  e.  F )
Distinct variable groups:    x, G    x, I    x, R    x, V    x, W    ph, x
Allowed substitution hints:    F( x)    N( x)

Proof of Theorem lflnegcl
Dummy variables  y 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 lflnegcl.r . . . . . . . 8  |-  R  =  (Scalar `  W )
32lmodrng 15963 . . . . . . 7  |-  ( W  e.  LMod  ->  R  e. 
Ring )
41, 3syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Ring )
5 rnggrp 15674 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
64, 5syl 16 . . . . 5  |-  ( ph  ->  R  e.  Grp )
76adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  Grp )
81adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LMod )
9 lflnegcl.g . . . . . 6  |-  ( ph  ->  G  e.  F )
109adantr 453 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  G  e.  F )
11 simpr 449 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
12 eqid 2438 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
13 lflnegcl.v . . . . . 6  |-  V  =  ( Base `  W
)
14 lflnegcl.f . . . . . 6  |-  F  =  (LFnl `  W )
152, 12, 13, 14lflcl 29936 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
168, 10, 11, 15syl3anc 1185 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
17 lflnegcl.i . . . . 5  |-  I  =  ( inv g `  R )
1812, 17grpinvcl 14855 . . . 4  |-  ( ( R  e.  Grp  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
197, 16, 18syl2anc 644 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
20 lflnegcl.n . . 3  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
2119, 20fmptd 5896 . 2  |-  ( ph  ->  N : V --> ( Base `  R ) )
22 rngabl 15698 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Abel )
234, 22syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Abel )
2423adantr 453 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Abel )
254adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Ring )
26 simpr1 964 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  k  e.  ( Base `  R
) )
271adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  W  e.  LMod )
289adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  G  e.  F )
29 simpr2 965 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  y  e.  V )
302, 12, 13, 14lflcl 29936 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  V )  ->  ( G `  y )  e.  ( Base `  R
) )
3127, 28, 29, 30syl3anc 1185 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  y )  e.  ( Base `  R
) )
32 eqid 2438 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
3312, 32rngcl 15682 . . . . . . 7  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  R
)  /\  ( G `  y )  e.  (
Base `  R )
)  ->  ( k
( .r `  R
) ( G `  y ) )  e.  ( Base `  R
) )
3425, 26, 31, 33syl3anc 1185 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
) )
35 simpr3 966 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  z  e.  V )
362, 12, 13, 14lflcl 29936 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  z  e.  V )  ->  ( G `  z )  e.  ( Base `  R
) )
3727, 28, 35, 36syl3anc 1185 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  z )  e.  ( Base `  R
) )
38 eqid 2438 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
3912, 38, 17ablinvadd 15439 . . . . . 6  |-  ( ( R  e.  Abel  /\  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
)  /\  ( G `  z )  e.  (
Base `  R )
)  ->  ( I `  ( ( k ( .r `  R ) ( G `  y
) ) ( +g  `  R ) ( G `
 z ) ) )  =  ( ( I `  ( k ( .r `  R
) ( G `  y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4024, 34, 37, 39syl3anc 1185 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( (
k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) )  =  ( ( I `
 ( k ( .r `  R ) ( G `  y
) ) ) ( +g  `  R ) ( I `  ( G `  z )
) ) )
41 eqid 2438 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
42 eqid 2438 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
4313, 41, 2, 42, 12, 38, 32, 14lfli 29933 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
k  e.  ( Base `  R )  /\  y  e.  V  /\  z  e.  V ) )  -> 
( G `  (
( k ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4427, 28, 26, 29, 35, 43syl113anc 1197 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4544fveq2d 5735 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( I `  ( ( k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) ) )
4612, 32, 17, 25, 26, 31rngmneg2 15711 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( I `
 ( G `  y ) ) )  =  ( I `  ( k ( .r
`  R ) ( G `  y ) ) ) )
4746oveq1d 6099 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) )  =  ( ( I `  (
k ( .r `  R ) ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4840, 45, 473eqtr4d 2480 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4913, 2, 42, 12lmodvscl 15972 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  R
)  /\  y  e.  V )  ->  (
k ( .s `  W ) y )  e.  V )
5027, 26, 29, 49syl3anc 1185 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .s `  W ) y )  e.  V )
5113, 41lmodvacl 15969 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
5227, 50, 35, 51syl3anc 1185 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
53 fveq2 5731 . . . . . . 7  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  ( G `  x )  =  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )
5453fveq2d 5735 . . . . . 6  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
55 fvex 5745 . . . . . 6  |-  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  e.  _V
5654, 20, 55fvmpt 5809 . . . . 5  |-  ( ( ( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V  ->  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) ) )
5752, 56syl 16 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
58 fveq2 5731 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
5958fveq2d 5735 . . . . . . . 8  |-  ( x  =  y  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  y )
) )
60 fvex 5745 . . . . . . . 8  |-  ( I `
 ( G `  y ) )  e. 
_V
6159, 20, 60fvmpt 5809 . . . . . . 7  |-  ( y  e.  V  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6229, 61syl 16 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6362oveq2d 6100 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( N `
 y ) )  =  ( k ( .r `  R ) ( I `  ( G `  y )
) ) )
64 fveq2 5731 . . . . . . . 8  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
6564fveq2d 5735 . . . . . . 7  |-  ( x  =  z  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  z )
) )
66 fvex 5745 . . . . . . 7  |-  ( I `
 ( G `  z ) )  e. 
_V
6765, 20, 66fvmpt 5809 . . . . . 6  |-  ( z  e.  V  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6835, 67syl 16 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6963, 68oveq12d 6102 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( N `  y ) ) ( +g  `  R
) ( N `  z ) )  =  ( ( k ( .r `  R ) ( I `  ( G `  y )
) ) ( +g  `  R ) ( I `
 ( G `  z ) ) ) )
7048, 57, 693eqtr4d 2480 . . 3  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7170ralrimivvva 2801 . 2  |-  ( ph  ->  A. k  e.  (
Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7213, 41, 2, 42, 12, 38, 32, 14islfl 29932 . . 3  |-  ( W  e.  LMod  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R
)  /\  A. k  e.  ( Base `  R
) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
731, 72syl 16 . 2  |-  ( ph  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R )  /\  A. k  e.  ( Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
7421, 71, 73mpbir2and 890 1  |-  ( ph  ->  N  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    e. cmpt 4269   -->wf 5453   ` cfv 5457  (class class class)co 6084   Basecbs 13474   +g cplusg 13534   .rcmulr 13535  Scalarcsca 13537   .scvsca 13538   Grpcgrp 14690   inv gcminusg 14691   Abelcabel 15418   Ringcrg 15665   LModclmod 15955  LFnlclfn 29929
This theorem is referenced by:  ldualgrplem  30017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-plusg 13547  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-lmod 15957  df-lfl 29930
  Copyright terms: Public domain W3C validator