MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Unicode version

Theorem lgsdchr 20603
Description: The Legendre symbol function  X ( m )  =  ( m  / L N ), where  N is an odd positive number, is a real Dirichlet character modulo  N. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g  |-  G  =  (DChr `  N )
lgsdchr.z  |-  Z  =  (ℤ/n `  N )
lgsdchr.d  |-  D  =  ( Base `  G
)
lgsdchr.b  |-  B  =  ( Base `  Z
)
lgsdchr.l  |-  L  =  ( ZRHom `  Z
)
lgsdchr.x  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  / L N ) ) ) )
Assertion
Ref Expression
lgsdchr  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Distinct variable groups:    y, B    h, m, y, L    h, N, m, y    y, X   
y, Z
Allowed substitution hints:    B( h, m)    D( y, h, m)    G( y, h, m)    X( h, m)    Z( h, m)

Proof of Theorem lgsdchr
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 5252 . . . . . 6  |-  ( iota
h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) )  e. 
_V
21a1i 10 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) )  e. 
_V )
3 lgsdchr.x . . . . . 6  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  / L N ) ) ) )
43a1i 10 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) ) ) )
5 nnnn0 9988 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
65adantr 451 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN0 )
7 lgsdchr.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
8 lgsdchr.b . . . . . . . . 9  |-  B  =  ( Base `  Z
)
9 lgsdchr.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
107, 8, 9znzrhfo 16517 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
116, 10syl 15 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  L : ZZ -onto-> B )
12 foelrn 5695 . . . . . . 7  |-  ( ( L : ZZ -onto-> B  /\  x  e.  B
)  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
1311, 12sylan 457 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
14 lgsdchr.g . . . . . . . . . . 11  |-  G  =  (DChr `  N )
15 lgsdchr.d . . . . . . . . . . 11  |-  D  =  ( Base `  G
)
1614, 7, 15, 8, 9, 3lgsdchrval 20602 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  =  ( a  / L N ) )
17 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  a  e.  ZZ )
18 nnz 10061 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  ZZ )
1918ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  N  e.  ZZ )
20 lgscl 20565 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( a  / L N )  e.  ZZ )
2117, 19, 20syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  / L N )  e.  ZZ )
2221zred 10133 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  / L N )  e.  RR )
2316, 22eqeltrd 2370 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  e.  RR )
24 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  ( X `  x )  =  ( X `  ( L `  a ) ) )
2524eleq1d 2362 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  e.  RR  <->  ( X `  ( L `  a
) )  e.  RR ) )
2623, 25syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2726rexlimdva 2680 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2827imp 418 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( X `  x )  e.  RR )
2913, 28syldan 456 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  ( X `  x )  e.  RR )
302, 4, 29fmpt2d 5704 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> RR )
31 ax-resscn 8810 . . . 4  |-  RR  C_  CC
32 fss 5413 . . . 4  |-  ( ( X : B --> RR  /\  RR  C_  CC )  ->  X : B --> CC )
3330, 31, 32sylancl 643 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> CC )
34 eqid 2296 . . . . . 6  |-  (Unit `  Z )  =  (Unit `  Z )
358, 34unitss 15458 . . . . 5  |-  (Unit `  Z )  C_  B
36 foelrn 5695 . . . . . . . . 9  |-  ( ( L : ZZ -onto-> B  /\  y  e.  B
)  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3711, 36sylan 457 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3813, 37anim12dan 810 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
39 reeanv 2720 . . . . . . . . 9  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  <->  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
4017adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  ZZ )
41 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  ZZ )
426adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  N  e.  NN0 )
43 lgsdirnn0 20594 . . . . . . . . . . . . 13  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  N  e.  NN0 )  ->  (
( a  x.  b
)  / L N
)  =  ( ( a  / L N
)  x.  ( b  / L N ) ) )
4440, 41, 42, 43syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  b )  / L N )  =  ( ( a  / L N )  x.  (
b  / L N
) ) )
457zncrng 16514 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
466, 45syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  CRing )
47 crngrng 15367 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
4846, 47syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  Ring )
4948adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  Z  e.  Ring )
50 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  (flds  ZZ )  =  (flds  ZZ )
5150, 9zrhrhm 16482 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  Ring  ->  L  e.  ( (flds  ZZ ) RingHom  Z ) )
5249, 51syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  L  e.  ( (flds  ZZ ) RingHom  Z ) )
53 zsscn 10048 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  CC
54 cnfldbas 16399 . . . . . . . . . . . . . . . . . 18  |-  CC  =  ( Base ` fld )
5550, 54ressbas2 13215 . . . . . . . . . . . . . . . . 17  |-  ( ZZ  C_  CC  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
5653, 55ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ZZ  =  ( Base `  (flds  ZZ ) )
57 zex 10049 . . . . . . . . . . . . . . . . 17  |-  ZZ  e.  _V
58 cnfldmul 16401 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
5950, 58ressmulr 13277 . . . . . . . . . . . . . . . . 17  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
6057, 59ax-mp 8 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r `  (flds  ZZ ) )
61 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Z )  =  ( .r `  Z
)
6256, 60, 61rhmmul 15521 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  Z )  /\  a  e.  ZZ  /\  b  e.  ZZ )  ->  ( L `  ( a  x.  b ) )  =  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) )
6352, 40, 41, 62syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( L `  (
a  x.  b ) )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
6463fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( X `  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) ) )
65 zmulcl 10082 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
6614, 7, 15, 8, 9, 3lgsdchrval 20602 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  x.  b )  e.  ZZ )  ->  ( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  / L N ) )
6765, 66sylan2 460 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  / L N ) )
6864, 67eqtr3d 2330 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( a  x.  b )  / L N ) )
6916adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  a )
)  =  ( a  / L N ) )
7014, 7, 15, 8, 9, 3lgsdchrval 20602 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  b  e.  ZZ )  ->  ( X `
 ( L `  b ) )  =  ( b  / L N ) )
7170adantrl 696 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  b )
)  =  ( b  / L N ) )
7269, 71oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( X `  ( L `  a ) )  x.  ( X `
 ( L `  b ) ) )  =  ( ( a  / L N )  x.  ( b  / L N ) ) )
7344, 68, 723eqtr4d 2338 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
74 oveq12 5883 . . . . . . . . . . . . 13  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( x ( .r
`  Z ) y )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
7574fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( X `
 ( ( L `
 a ) ( .r `  Z ) ( L `  b
) ) ) )
76 fveq2 5541 . . . . . . . . . . . . 13  |-  ( y  =  ( L `  b )  ->  ( X `  y )  =  ( X `  ( L `  b ) ) )
7724, 76oveqan12d 5893 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  x )  x.  ( X `  y )
)  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
7875, 77eqeq12d 2310 . . . . . . . . . . 11  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) ) )
7973, 78syl5ibrcom 213 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
8079rexlimdvva 2687 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
8139, 80syl5bir 209 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8281imp 418 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
8338, 82syldan 456 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
8483ralrimivva 2648 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )
85 ssralv 3250 . . . . . . 7  |-  ( (Unit `  Z )  C_  B  ->  ( A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
8685ralimdv 2635 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  B  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
87 ssralv 3250 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8886, 87syld 40 . . . . 5  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8935, 84, 88mpsyl 59 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
90 1z 10069 . . . . . 6  |-  1  e.  ZZ
9114, 7, 15, 8, 9, 3lgsdchrval 20602 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  1  e.  ZZ )  ->  ( X `
 ( L ` 
1 ) )  =  ( 1  / L N ) )
9290, 91mpan2 652 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( 1  / L N ) )
93 eqid 2296 . . . . . . . 8  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
949, 93zrh1 16483 . . . . . . 7  |-  ( Z  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Z
) )
9548, 94syl 15 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( L ` 
1 )  =  ( 1r `  Z ) )
9695fveq2d 5545 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( X `
 ( 1r `  Z ) ) )
9718adantr 451 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
98 1lgs 20592 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1  / L N
)  =  1 )
9997, 98syl 15 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( 1  / L N )  =  1 )
10092, 96, 993eqtr3d 2336 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( 1r `  Z ) )  =  1 )
101 lgsne0 20588 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( a  / L N )  =/=  0  <->  ( a  gcd  N )  =  1 ) )
10217, 19, 101syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  / L N
)  =/=  0  <->  (
a  gcd  N )  =  1 ) )
103102biimpd 198 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  / L N
)  =/=  0  -> 
( a  gcd  N
)  =  1 ) )
10416neeq1d 2472 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  <->  ( a  / L N )  =/=  0 ) )
1057, 34, 9znunit 16533 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z )  <->  ( a  gcd  N )  =  1 ) )
1066, 105sylan 457 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z
)  <->  ( a  gcd 
N )  =  1 ) )
107103, 104, 1063imtr4d 259 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z )
) )
10824neeq1d 2472 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  <->  ( X `  ( L `  a ) )  =/=  0 ) )
109 eleq1 2356 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
x  e.  (Unit `  Z )  <->  ( L `  a )  e.  (Unit `  Z ) ) )
110108, 109imbi12d 311 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) )  <->  ( ( X `  ( L `  a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z ) ) ) )
111107, 110syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) )
112111rexlimdva 2680 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
113112imp 418 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z )
) )
11413, 113syldan 456 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) )
115114ralrimiva 2639 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) ) )
11689, 100, 1153jca 1132 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
)  /\  ( X `  ( 1r `  Z
) )  =  1  /\  A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
117 simpl 443 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN )
11814, 7, 8, 34, 117, 15dchrelbas3 20493 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  <->  ( X : B
--> CC  /\  ( A. x  e.  (Unit `  Z
) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  Z ) )  =  1  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) ) ) )
11933, 116, 118mpbir2and 888 . 2  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  e.  D
)
120119, 30jca 518 1  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   iotacio 5233   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040    || cdivides 12547    gcd cgcd 12701   Basecbs 13164   ↾s cress 13165   .rcmulr 13225   Ringcrg 15353   CRingccrg 15354   1rcur 15355  Unitcui 15437   RingHom crh 15510  ℂfldccnfld 16393   ZRHomczrh 16467  ℤ/nczn 16470  DChrcdchr 20487    / Lclgs 20549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-phi 12850  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-imas 13427  df-divs 13428  df-mnd 14383  df-mhm 14431  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-rnghom 15512  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-dchr 20488  df-lgs 20550
  Copyright terms: Public domain W3C validator