MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 20586
Description: Lemma for lgsdi 20587. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq  1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid1 8851 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 452 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11825 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 642 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 10279 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7syl6eleq 2386 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 10132 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 10139 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 10134 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1310zcnd 10134 . . . . . 6  |-  ( ph  ->  N  e.  CC )
14 lgsdilem2.5 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
1512, 13, 4, 14mulne0d 9436 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
16 nnabscl 11825 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
1711, 15, 16syl2anc 642 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
1817nnzd 10132 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
1912abscld 11934 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
2013abscld 11934 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
2112absge0d 11942 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
22 nnabscl 11825 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
2310, 14, 22syl2anc 642 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
2423nnge1d 9804 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
2519, 20, 21, 24lemulge11d 9710 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
2612, 13absmuld 11952 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
2725, 26breqtrrd 4065 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
28 eluz2 10252 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
299, 18, 27, 28syl3anbrc 1136 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
30 lgsdilem2.1 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
31 lgsdilem2.6 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 ) )
3231lgsfcl3 20572 . . . . . 6  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
3330, 3, 4, 32syl3anc 1182 . . . . 5  |-  ( ph  ->  F : NN --> ZZ )
34 elfznn 10835 . . . . 5  |-  ( k  e.  ( 1 ... ( abs `  M
) )  ->  k  e.  NN )
35 ffvelrn 5679 . . . . 5  |-  ( ( F : NN --> ZZ  /\  k  e.  NN )  ->  ( F `  k
)  e.  ZZ )
3633, 34, 35syl2an 463 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( abs `  M ) ) )  ->  ( F `  k )  e.  ZZ )
3736zcnd 10134 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... ( abs `  M ) ) )  ->  ( F `  k )  e.  CC )
38 mulcl 8837 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
3938adantl 452 . . 3  |-  ( (
ph  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
408, 37, 39seqcl 11082 . 2  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
416peano2nnd 9779 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
42 elfzuz 10810 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
437uztrn2 10261 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
4441, 42, 43syl2an 463 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
45 eleq1 2356 . . . . . 6  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
46 oveq2 5882 . . . . . . 7  |-  ( n  =  k  ->  ( A  / L n )  =  ( A  / L k ) )
47 oveq1 5881 . . . . . . 7  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
4846, 47oveq12d 5892 . . . . . 6  |-  ( n  =  k  ->  (
( A  / L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) )
49 eqidd 2297 . . . . . 6  |-  ( n  =  k  ->  1  =  1 )
5045, 48, 49ifbieq12d 3600 . . . . 5  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
51 ovex 5899 . . . . . 6  |-  ( ( A  / L k ) ^ ( k 
pCnt  M ) )  e. 
_V
52 1ex 8849 . . . . . 6  |-  1  e.  _V
5351, 52ifex 3636 . . . . 5  |-  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  M )
) ,  1 )  e.  _V
5450, 31, 53fvmpt 5618 . . . 4  |-  ( k  e.  NN  ->  ( F `  k )  =  if ( k  e. 
Prime ,  ( ( A  / L k ) ^ ( k  pCnt  M ) ) ,  1 ) )
5544, 54syl 15 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  M
) ) ,  1 ) )
56 simpr 447 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
573ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
58 zq 10338 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5957, 58syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
60 pcabs 12943 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
6156, 59, 60syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
62 elfzle1 10815 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
6362adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
64 elfzelz 10814 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
65 zltp1le 10083 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
669, 64, 65syl2an 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
6763, 66mpbird 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
6819adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  e.  RR )
6964adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  ZZ )
7069zred 10133 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  RR )
7168, 70ltnled 8982 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
7267, 71mpbid 201 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
7372adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
74 prmz 12778 . . . . . . . . . . . 12  |-  ( k  e.  Prime  ->  k  e.  ZZ )
7574adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
764ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
7757, 76, 5syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
78 dvdsle 12590 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
7975, 77, 78syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
8073, 79mtod 168 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
81 pceq0 12939 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
8256, 77, 81syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
8380, 82mpbird 223 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
8461, 83eqtr3d 2330 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
8584oveq2d 5890 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ ( k  pCnt  M ) )  =  ( ( A  / L
k ) ^ 0 ) )
8630ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
87 lgscl 20565 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  / L
k )  e.  ZZ )
8886, 75, 87syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  / L k )  e.  ZZ )
8988zcnd 10134 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  / L k )  e.  CC )
9089exp0d 11255 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ 0 )  =  1 )
9185, 90eqtrd 2328 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ ( k  pCnt  M ) )  =  1 )
9291ifeq1da 3603 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
93 ifid 3610 . . . 4  |-  if ( k  e.  Prime ,  1 ,  1 )  =  1
9492, 93syl6eq 2344 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
9555, 94eqtrd 2328 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
962, 8, 29, 40, 95seqid2 11108 1  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq  1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   ifcif 3578   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   QQcq 10332   ...cfz 10798    seq cseq 11062   ^cexp 11120   abscabs 11735    || cdivides 12547   Primecprime 12774    pCnt cpc 12905    / Lclgs 20549
This theorem is referenced by:  lgsdi  20587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-phi 12850  df-pc 12906  df-lgs 20550
  Copyright terms: Public domain W3C validator