MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdilem2 Unicode version

Theorem lgsdilem2 20570
Description: Lemma for lgsdi 20571. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1  |-  ( ph  ->  A  e.  ZZ )
lgsdilem2.2  |-  ( ph  ->  M  e.  ZZ )
lgsdilem2.3  |-  ( ph  ->  N  e.  ZZ )
lgsdilem2.4  |-  ( ph  ->  M  =/=  0 )
lgsdilem2.5  |-  ( ph  ->  N  =/=  0 )
lgsdilem2.6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 ) )
Assertion
Ref Expression
lgsdilem2  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq  1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Distinct variable groups:    n, M    A, n    n, N
Allowed substitution hints:    ph( n)    F( n)

Proof of Theorem lgsdilem2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid1 8835 . . 3  |-  ( k  e.  CC  ->  (
k  x.  1 )  =  k )
21adantl 452 . 2  |-  ( (
ph  /\  k  e.  CC )  ->  ( k  x.  1 )  =  k )
3 lgsdilem2.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 lgsdilem2.4 . . . 4  |-  ( ph  ->  M  =/=  0 )
5 nnabscl 11809 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
63, 4, 5syl2anc 642 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  NN )
7 nnuz 10263 . . 3  |-  NN  =  ( ZZ>= `  1 )
86, 7syl6eleq 2373 . 2  |-  ( ph  ->  ( abs `  M
)  e.  ( ZZ>= ` 
1 ) )
96nnzd 10116 . . 3  |-  ( ph  ->  ( abs `  M
)  e.  ZZ )
10 lgsdilem2.3 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
113, 10zmulcld 10123 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  e.  ZZ )
123zcnd 10118 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1310zcnd 10118 . . . . . 6  |-  ( ph  ->  N  e.  CC )
14 lgsdilem2.5 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
1512, 13, 4, 14mulne0d 9420 . . . . 5  |-  ( ph  ->  ( M  x.  N
)  =/=  0 )
16 nnabscl 11809 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
1711, 15, 16syl2anc 642 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  NN )
1817nnzd 10116 . . 3  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ZZ )
1912abscld 11918 . . . . 5  |-  ( ph  ->  ( abs `  M
)  e.  RR )
2013abscld 11918 . . . . 5  |-  ( ph  ->  ( abs `  N
)  e.  RR )
2112absge0d 11926 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  M ) )
22 nnabscl 11809 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
2310, 14, 22syl2anc 642 . . . . . 6  |-  ( ph  ->  ( abs `  N
)  e.  NN )
2423nnge1d 9788 . . . . 5  |-  ( ph  ->  1  <_  ( abs `  N ) )
2519, 20, 21, 24lemulge11d 9694 . . . 4  |-  ( ph  ->  ( abs `  M
)  <_  ( ( abs `  M )  x.  ( abs `  N
) ) )
2612, 13absmuld 11936 . . . 4  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
2725, 26breqtrrd 4049 . . 3  |-  ( ph  ->  ( abs `  M
)  <_  ( abs `  ( M  x.  N
) ) )
28 eluz2 10236 . . 3  |-  ( ( abs `  ( M  x.  N ) )  e.  ( ZZ>= `  ( abs `  M ) )  <-> 
( ( abs `  M
)  e.  ZZ  /\  ( abs `  ( M  x.  N ) )  e.  ZZ  /\  ( abs `  M )  <_ 
( abs `  ( M  x.  N )
) ) )
299, 18, 27, 28syl3anbrc 1136 . 2  |-  ( ph  ->  ( abs `  ( M  x.  N )
)  e.  ( ZZ>= `  ( abs `  M ) ) )
30 lgsdilem2.1 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
31 lgsdilem2.6 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 ) )
3231lgsfcl3 20556 . . . . . 6  |-  ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  F : NN --> ZZ )
3330, 3, 4, 32syl3anc 1182 . . . . 5  |-  ( ph  ->  F : NN --> ZZ )
34 elfznn 10819 . . . . 5  |-  ( k  e.  ( 1 ... ( abs `  M
) )  ->  k  e.  NN )
35 ffvelrn 5663 . . . . 5  |-  ( ( F : NN --> ZZ  /\  k  e.  NN )  ->  ( F `  k
)  e.  ZZ )
3633, 34, 35syl2an 463 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( abs `  M ) ) )  ->  ( F `  k )  e.  ZZ )
3736zcnd 10118 . . 3  |-  ( (
ph  /\  k  e.  ( 1 ... ( abs `  M ) ) )  ->  ( F `  k )  e.  CC )
38 mulcl 8821 . . . 4  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
3938adantl 452 . . 3  |-  ( (
ph  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
408, 37, 39seqcl 11066 . 2  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  e.  CC )
416peano2nnd 9763 . . . . 5  |-  ( ph  ->  ( ( abs `  M
)  +  1 )  e.  NN )
42 elfzuz 10794 . . . . 5  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )
437uztrn2 10245 . . . . 5  |-  ( ( ( ( abs `  M
)  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( abs `  M )  +  1 ) ) )  ->  k  e.  NN )
4441, 42, 43syl2an 463 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  NN )
45 eleq1 2343 . . . . . 6  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
46 oveq2 5866 . . . . . . 7  |-  ( n  =  k  ->  ( A  / L n )  =  ( A  / L k ) )
47 oveq1 5865 . . . . . . 7  |-  ( n  =  k  ->  (
n  pCnt  M )  =  ( k  pCnt  M ) )
4846, 47oveq12d 5876 . . . . . 6  |-  ( n  =  k  ->  (
( A  / L
n ) ^ (
n  pCnt  M )
)  =  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) )
49 eqidd 2284 . . . . . 6  |-  ( n  =  k  ->  1  =  1 )
5045, 48, 49ifbieq12d 3587 . . . . 5  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  M
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  M )
) ,  1 ) )
51 ovex 5883 . . . . . 6  |-  ( ( A  / L k ) ^ ( k 
pCnt  M ) )  e. 
_V
52 1ex 8833 . . . . . 6  |-  1  e.  _V
5351, 52ifex 3623 . . . . 5  |-  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  M )
) ,  1 )  e.  _V
5450, 31, 53fvmpt 5602 . . . 4  |-  ( k  e.  NN  ->  ( F `  k )  =  if ( k  e. 
Prime ,  ( ( A  / L k ) ^ ( k  pCnt  M ) ) ,  1 ) )
5544, 54syl 15 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  M
) ) ,  1 ) )
56 simpr 447 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  Prime )
573ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  ZZ )
58 zq 10322 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5957, 58syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  e.  QQ )
60 pcabs 12927 . . . . . . . . 9  |-  ( ( k  e.  Prime  /\  M  e.  QQ )  ->  (
k  pCnt  ( abs `  M ) )  =  ( k  pCnt  M
) )
6156, 59, 60syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  ( k 
pCnt  M ) )
62 elfzle1 10799 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  (
( abs `  M
)  +  1 )  <_  k )
6362adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  +  1 )  <_  k )
64 elfzelz 10798 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N )
) )  ->  k  e.  ZZ )
65 zltp1le 10067 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( abs `  M
)  <  k  <->  ( ( abs `  M )  +  1 )  <_  k
) )
669, 64, 65syl2an 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  ( ( abs `  M
)  +  1 )  <_  k ) )
6763, 66mpbird 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  <  k )
6819adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( abs `  M
)  e.  RR )
6964adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  ZZ )
7069zred 10117 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  k  e.  RR )
7168, 70ltnled 8966 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( ( abs `  M )  <  k  <->  -.  k  <_  ( abs `  M ) ) )
7267, 71mpbid 201 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  -.  k  <_  ( abs `  M ) )
7372adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  <_  ( abs `  M ) )
74 prmz 12762 . . . . . . . . . . . 12  |-  ( k  e.  Prime  ->  k  e.  ZZ )
7574adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  k  e.  ZZ )
764ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  M  =/=  0
)
7757, 76, 5syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( abs `  M
)  e.  NN )
78 dvdsle 12574 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( abs `  M )  e.  NN )  -> 
( k  ||  ( abs `  M )  -> 
k  <_  ( abs `  M ) ) )
7975, 77, 78syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  ||  ( abs `  M )  ->  k  <_  ( abs `  M ) ) )
8073, 79mtod 168 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  -.  k  ||  ( abs `  M ) )
81 pceq0 12923 . . . . . . . . . 10  |-  ( ( k  e.  Prime  /\  ( abs `  M )  e.  NN )  ->  (
( k  pCnt  ( abs `  M ) )  =  0  <->  -.  k  ||  ( abs `  M
) ) )
8256, 77, 81syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( k 
pCnt  ( abs `  M
) )  =  0  <->  -.  k  ||  ( abs `  M ) ) )
8380, 82mpbird 223 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  ( abs `  M ) )  =  0 )
8461, 83eqtr3d 2317 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( k  pCnt  M )  =  0 )
8584oveq2d 5874 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ ( k  pCnt  M ) )  =  ( ( A  / L
k ) ^ 0 ) )
8630ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  A  e.  ZZ )
87 lgscl 20549 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  / L
k )  e.  ZZ )
8886, 75, 87syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  / L k )  e.  ZZ )
8988zcnd 10118 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( A  / L k )  e.  CC )
9089exp0d 11239 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ 0 )  =  1 )
9185, 90eqtrd 2315 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  /\  k  e.  Prime )  ->  ( ( A  / L k ) ^ ( k  pCnt  M ) )  =  1 )
9291ifeq1da 3590 . . . 4  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  if ( k  e.  Prime ,  1 ,  1 ) )
93 ifid 3597 . . . 4  |-  if ( k  e.  Prime ,  1 ,  1 )  =  1
9492, 93syl6eq 2331 . . 3  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  if ( k  e.  Prime ,  ( ( A  / L k ) ^ ( k 
pCnt  M ) ) ,  1 )  =  1 )
9555, 94eqtrd 2315 . 2  |-  ( (
ph  /\  k  e.  ( ( ( abs `  M )  +  1 ) ... ( abs `  ( M  x.  N
) ) ) )  ->  ( F `  k )  =  1 )
962, 8, 29, 40, 95seqid2 11092 1  |-  ( ph  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  M
) )  =  (  seq  1 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   ifcif 3565   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   QQcq 10316   ...cfz 10782    seq cseq 11046   ^cexp 11104   abscabs 11719    || cdivides 12531   Primecprime 12758    pCnt cpc 12889    / Lclgs 20533
This theorem is referenced by:  lgsdi  20571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-lgs 20534
  Copyright terms: Public domain W3C validator