MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Unicode version

Theorem lgsdir2 20583
Description: The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  ( ( A  / L
2 )  x.  ( B  / L 2 ) ) )

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 8847 . . . . . 6  |-  0  e.  CC
2 ax-1cn 8811 . . . . . . 7  |-  1  e.  CC
3 neg1cn 9829 . . . . . . 7  |-  -u 1  e.  CC
42, 3keepel 3635 . . . . . 6  |-  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC
51, 4keepel 3635 . . . . 5  |-  if ( 2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC
65mul02i 9017 . . . 4  |-  ( 0  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  0
7 iftrue 3584 . . . . . 6  |-  ( 2 
||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
87adantl 452 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
98oveq1d 5889 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( 0  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ) )
10 2z 10070 . . . . . . 7  |-  2  e.  ZZ
11 dvdsmultr1 12579 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  A  ->  2 
||  ( A  x.  B ) ) )
1210, 11mp3an1 1264 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  A  ->  2  ||  ( A  x.  B ) ) )
1312imp 418 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  ||  ( A  x.  B
) )
14 iftrue 3584 . . . . 5  |-  ( 2 
||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
1513, 14syl 15 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
166, 9, 153eqtr4a 2354 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
172, 3keepel 3635 . . . . . 6  |-  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC
181, 17keepel 3635 . . . . 5  |-  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC
1918mul01i 9018 . . . 4  |-  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  0 )  =  0
20 iftrue 3584 . . . . . 6  |-  ( 2 
||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
2120adantl 452 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
2221oveq2d 5890 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  0 ) )
23 dvdsmultr2 12580 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  B  ->  2 
||  ( A  x.  B ) ) )
2410, 23mp3an1 1264 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  ->  2  ||  ( A  x.  B ) ) )
2524imp 418 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  2  ||  ( A  x.  B
) )
2625, 14syl 15 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
2719, 22, 263eqtr4a 2354 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
284mulid2i 8856 . . . . . 6  |-  ( 1  x.  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )
29 iftrue 3584 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3029adantl 452 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3130oveq1d 5889 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( 1  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
32 lgsdir2lem4 20581 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
3332adantlr 695 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
3433ifbid 3596 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
3528, 31, 343eqtr4a 2354 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
3617mulid1i 8855 . . . . . 6  |-  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  1 )  =  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
37 iftrue 3584 . . . . . . . 8  |-  ( ( B  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3837adantl 452 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3938oveq2d 5890 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 ) )
40 zcn 10045 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
41 zcn 10045 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  CC )
42 mulcom 8839 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
4340, 41, 42syl2an 463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
4443ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  x.  B )  =  ( B  x.  A ) )
4544oveq1d 5889 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( A  x.  B
)  mod  8 )  =  ( ( B  x.  A )  mod  8 ) )
4645eleq1d 2362 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( ( B  x.  A )  mod  8 )  e.  {
1 ,  7 } ) )
47 lgsdir2lem4 20581 . . . . . . . . . 10  |-  ( ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
4847ancom1s 780 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
4948adantlr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( B  x.  A )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
5046, 49bitrd 244 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
5150ifbid 3596 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
5236, 39, 513eqtr4a 2354 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
533mulm1i 9240 . . . . . . 7  |-  ( -u
1  x.  -u 1
)  =  -u -u 1
542negnegi 9132 . . . . . . 7  |-  -u -u 1  =  1
5553, 54eqtri 2316 . . . . . 6  |-  ( -u
1  x.  -u 1
)  =  1
56 iffalse 3585 . . . . . . . 8  |-  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
57 iffalse 3585 . . . . . . . 8  |-  ( -.  ( B  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
5856, 57oveqan12d 5893 . . . . . . 7  |-  ( ( -.  ( A  mod  8 )  e.  {
1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
5958adantl 452 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
60 lgsdir2lem3 20580 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
6160ad2ant2r 727 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
62 elun 3329 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( A  mod  8 )  e. 
{ 3 ,  5 } ) )
6361, 62sylib 188 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( A  mod  8 )  e.  {
3 ,  5 } ) )
6463orcanai 879 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  mod  8 )  e. 
{ 3 ,  5 } )
65 lgsdir2lem3 20580 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  -.  2  ||  B )  ->  ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
6665ad2ant2l 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( B  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
67 elun 3329 . . . . . . . . . . 11  |-  ( ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
6866, 67sylib 188 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( B  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
3 ,  5 } ) )
6968orcanai 879 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( B  mod  8 )  e. 
{ 3 ,  5 } )
7064, 69anim12dan 810 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
71 lgsdir2lem5 20582 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
7271adantlr 695 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
7370, 72syldan 456 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } )
74 iftrue 3584 . . . . . . 7  |-  ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7573, 74syl 15 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  if (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  =  1 )
7655, 59, 753eqtr4a 2354 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
7735, 52, 76pm2.61ddan 767 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
78 iffalse 3585 . . . . . 6  |-  ( -.  2  ||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
79 iffalse 3585 . . . . . 6  |-  ( -.  2  ||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
8078, 79oveqan12d 5893 . . . . 5  |-  ( ( -.  2  ||  A  /\  -.  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
8180adantl 452 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
82 ioran 476 . . . . . 6  |-  ( -.  ( 2  ||  A  \/  2  ||  B )  <-> 
( -.  2  ||  A  /\  -.  2  ||  B ) )
83 2prm 12790 . . . . . . . . 9  |-  2  e.  Prime
84 euclemma 12803 . . . . . . . . 9  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  ( A  x.  B )  <->  ( 2 
||  A  \/  2 
||  B ) ) )
8583, 84mp3an1 1264 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  ( A  x.  B )  <->  ( 2  ||  A  \/  2  ||  B ) ) )
8685notbid 285 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  2  ||  ( A  x.  B
)  <->  -.  ( 2 
||  A  \/  2 
||  B ) ) )
8786biimpar 471 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  -.  2  ||  ( A  x.  B
) )
8882, 87sylan2br 462 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  -.  2  ||  ( A  x.  B ) )
89 iffalse 3585 . . . . 5  |-  ( -.  2  ||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
9088, 89syl 15 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
9177, 81, 903eqtr4d 2338 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
9216, 27, 91pm2.61ddan 767 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
93 lgs2 20568 . . 3  |-  ( A  e.  ZZ  ->  ( A  / L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
94 lgs2 20568 . . 3  |-  ( B  e.  ZZ  ->  ( B  / L 2 )  =  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
9593, 94oveqan12d 5893 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  / L 2 )  x.  ( B  / L
2 ) )  =  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ) )
96 zmulcl 10082 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
97 lgs2 20568 . . 3  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  / L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
9896, 97syl 15 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
9992, 95, 983eqtr4rd 2339 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  ( ( A  / L
2 )  x.  ( B  / L 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    u. cun 3163   ifcif 3578   {cpr 3654   class class class wbr 4039  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    x. cmul 8758   -ucneg 9054   2c2 9811   3c3 9812   5c5 9814   7c7 9816   8c8 9817   ZZcz 10040    mod cmo 10989    || cdivides 12547   Primecprime 12774    / Lclgs 20549
This theorem is referenced by:  lgsdirprm  20584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-phi 12850  df-pc 12906  df-lgs 20550
  Copyright terms: Public domain W3C validator