MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Unicode version

Theorem lgsdir2 21104
Description: The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  ( ( A  / L
2 )  x.  ( B  / L 2 ) ) )

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 9076 . . . . . 6  |-  0  e.  CC
2 ax-1cn 9040 . . . . . . 7  |-  1  e.  CC
3 neg1cn 10059 . . . . . . 7  |-  -u 1  e.  CC
42, 3keepel 3788 . . . . . 6  |-  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC
51, 4keepel 3788 . . . . 5  |-  if ( 2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC
65mul02i 9247 . . . 4  |-  ( 0  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  0
7 iftrue 3737 . . . . . 6  |-  ( 2 
||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
87adantl 453 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
98oveq1d 6088 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( 0  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ) )
10 2z 10304 . . . . . . 7  |-  2  e.  ZZ
11 dvdsmultr1 12876 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  A  ->  2 
||  ( A  x.  B ) ) )
1210, 11mp3an1 1266 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  A  ->  2  ||  ( A  x.  B ) ) )
1312imp 419 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  ||  ( A  x.  B
) )
14 iftrue 3737 . . . . 5  |-  ( 2 
||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
1513, 14syl 16 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
166, 9, 153eqtr4a 2493 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
172, 3keepel 3788 . . . . . 6  |-  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC
181, 17keepel 3788 . . . . 5  |-  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC
1918mul01i 9248 . . . 4  |-  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  0 )  =  0
20 iftrue 3737 . . . . . 6  |-  ( 2 
||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
2120adantl 453 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
2221oveq2d 6089 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  0 ) )
23 dvdsmultr2 12877 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  B  ->  2 
||  ( A  x.  B ) ) )
2410, 23mp3an1 1266 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  ->  2  ||  ( A  x.  B ) ) )
2524imp 419 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  2  ||  ( A  x.  B
) )
2625, 14syl 16 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
2719, 22, 263eqtr4a 2493 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
284mulid2i 9085 . . . . . 6  |-  ( 1  x.  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )
29 iftrue 3737 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3029adantl 453 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3130oveq1d 6088 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( 1  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
32 lgsdir2lem4 21102 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
3332adantlr 696 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
3433ifbid 3749 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
3528, 31, 343eqtr4a 2493 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
3617mulid1i 9084 . . . . . 6  |-  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  1 )  =  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)
37 iftrue 3737 . . . . . . . 8  |-  ( ( B  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3837adantl 453 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
3938oveq2d 6089 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 ) )
40 zcn 10279 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
41 zcn 10279 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  CC )
42 mulcom 9068 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
4340, 41, 42syl2an 464 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
4443ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  x.  B )  =  ( B  x.  A ) )
4544oveq1d 6088 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( A  x.  B
)  mod  8 )  =  ( ( B  x.  A )  mod  8 ) )
4645eleq1d 2501 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( ( B  x.  A )  mod  8 )  e.  {
1 ,  7 } ) )
47 lgsdir2lem4 21102 . . . . . . . . . 10  |-  ( ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
4847ancom1s 781 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
4948adantlr 696 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( B  x.  A )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
5046, 49bitrd 245 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
5150ifbid 3749 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
5236, 39, 513eqtr4a 2493 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
533mulm1i 9470 . . . . . . 7  |-  ( -u
1  x.  -u 1
)  =  -u -u 1
542negnegi 9362 . . . . . . 7  |-  -u -u 1  =  1
5553, 54eqtri 2455 . . . . . 6  |-  ( -u
1  x.  -u 1
)  =  1
56 iffalse 3738 . . . . . . . 8  |-  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
57 iffalse 3738 . . . . . . . 8  |-  ( -.  ( B  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
5856, 57oveqan12d 6092 . . . . . . 7  |-  ( ( -.  ( A  mod  8 )  e.  {
1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
5958adantl 453 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
60 lgsdir2lem3 21101 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
6160ad2ant2r 728 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
62 elun 3480 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( A  mod  8 )  e. 
{ 3 ,  5 } ) )
6361, 62sylib 189 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( A  mod  8 )  e.  {
3 ,  5 } ) )
6463orcanai 880 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  mod  8 )  e. 
{ 3 ,  5 } )
65 lgsdir2lem3 21101 . . . . . . . . . . . 12  |-  ( ( B  e.  ZZ  /\  -.  2  ||  B )  ->  ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
6665ad2ant2l 727 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( B  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
67 elun 3480 . . . . . . . . . . 11  |-  ( ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
6866, 67sylib 189 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( B  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
3 ,  5 } ) )
6968orcanai 880 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( B  mod  8 )  e. 
{ 3 ,  5 } )
7064, 69anim12dan 811 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
71 lgsdir2lem5 21103 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
7271adantlr 696 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
7370, 72syldan 457 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } )
74 iftrue 3737 . . . . . . 7  |-  ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7573, 74syl 16 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  if (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  =  1 )
7655, 59, 753eqtr4a 2493 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
7735, 52, 76pm2.61ddan 768 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
78 iffalse 3738 . . . . . 6  |-  ( -.  2  ||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
79 iffalse 3738 . . . . . 6  |-  ( -.  2  ||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
8078, 79oveqan12d 6092 . . . . 5  |-  ( ( -.  2  ||  A  /\  -.  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
8180adantl 453 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
82 ioran 477 . . . . . 6  |-  ( -.  ( 2  ||  A  \/  2  ||  B )  <-> 
( -.  2  ||  A  /\  -.  2  ||  B ) )
83 2prm 13087 . . . . . . . . 9  |-  2  e.  Prime
84 euclemma 13100 . . . . . . . . 9  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  ( A  x.  B )  <->  ( 2 
||  A  \/  2 
||  B ) ) )
8583, 84mp3an1 1266 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  ( A  x.  B )  <->  ( 2  ||  A  \/  2  ||  B ) ) )
8685notbid 286 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  2  ||  ( A  x.  B
)  <->  -.  ( 2 
||  A  \/  2 
||  B ) ) )
8786biimpar 472 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  -.  2  ||  ( A  x.  B
) )
8882, 87sylan2br 463 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  -.  2  ||  ( A  x.  B ) )
89 iffalse 3738 . . . . 5  |-  ( -.  2  ||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
9088, 89syl 16 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
9177, 81, 903eqtr4d 2477 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
9216, 27, 91pm2.61ddan 768 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
93 lgs2 21089 . . 3  |-  ( A  e.  ZZ  ->  ( A  / L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
94 lgs2 21089 . . 3  |-  ( B  e.  ZZ  ->  ( B  / L 2 )  =  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
9593, 94oveqan12d 6092 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  / L 2 )  x.  ( B  / L
2 ) )  =  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ) )
96 zmulcl 10316 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
97 lgs2 21089 . . 3  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  / L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
9896, 97syl 16 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
9992, 95, 983eqtr4rd 2478 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  / L
2 )  =  ( ( A  / L
2 )  x.  ( B  / L 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    u. cun 3310   ifcif 3731   {cpr 3807   class class class wbr 4204  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    x. cmul 8987   -ucneg 9284   2c2 10041   3c3 10042   5c5 10044   7c7 10046   8c8 10047   ZZcz 10274    mod cmo 11242    || cdivides 12844   Primecprime 13071    / Lclgs 21070
This theorem is referenced by:  lgsdirprm  21105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-gcd 12999  df-prm 13072  df-phi 13147  df-pc 13203  df-lgs 21071
  Copyright terms: Public domain W3C validator