MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem4 Structured version   Unicode version

Theorem lgsdir2lem4 21115
Description: Lemma for lgsdir2 21117. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )

Proof of Theorem lgsdir2lem4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ovex 6109 . . 3  |-  ( A  mod  8 )  e. 
_V
21elpr 3834 . 2  |-  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
3 zre 10291 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
43ad2antrr 708 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  A  e.  RR )
5 1re 9095 . . . . . . 7  |-  1  e.  RR
65a1i 11 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  1  e.  RR )
7 simplr 733 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  B  e.  ZZ )
8 8re 10083 . . . . . . . 8  |-  8  e.  RR
9 8pos 10095 . . . . . . . 8  |-  0  <  8
108, 9elrpii 10620 . . . . . . 7  |-  8  e.  RR+
1110a1i 11 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  8  e.  RR+ )
12 simpr 449 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( A  mod  8 )  =  1 )
13 lgsdir2lem1 21112 . . . . . . . . 9  |-  ( ( ( 1  mod  8
)  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 ) )
1413simpli 446 . . . . . . . 8  |-  ( ( 1  mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )
1514simpli 446 . . . . . . 7  |-  ( 1  mod  8 )  =  1
1612, 15syl6eqr 2488 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( A  mod  8 )  =  ( 1  mod  8 ) )
17 modmul1 11284 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  e.  RR )  /\  ( B  e.  ZZ  /\  8  e.  RR+ )  /\  ( A  mod  8 )  =  ( 1  mod  8
) )  ->  (
( A  x.  B
)  mod  8 )  =  ( ( 1  x.  B )  mod  8 ) )
184, 6, 7, 11, 16, 17syl221anc 1196 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( ( A  x.  B )  mod  8 )  =  ( ( 1  x.  B
)  mod  8 ) )
19 zcn 10292 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
2019ad2antlr 709 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  B  e.  CC )
2120mulid2d 9111 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( 1  x.  B )  =  B )
2221oveq1d 6099 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( (
1  x.  B )  mod  8 )  =  ( B  mod  8
) )
2318, 22eqtrd 2470 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( ( A  x.  B )  mod  8 )  =  ( B  mod  8 ) )
2423eleq1d 2504 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  1 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
253ad2antrr 708 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  A  e.  RR )
265renegcli 9367 . . . . . . . 8  |-  -u 1  e.  RR
2726a1i 11 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  -u 1  e.  RR )
28 simplr 733 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  B  e.  ZZ )
2910a1i 11 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  8  e.  RR+ )
30 simpr 449 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( A  mod  8 )  =  7 )
3114simpri 450 . . . . . . . 8  |-  ( -u
1  mod  8 )  =  7
3230, 31syl6eqr 2488 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( A  mod  8 )  =  (
-u 1  mod  8
) )
33 modmul1 11284 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  -u 1  e.  RR )  /\  ( B  e.  ZZ  /\  8  e.  RR+ )  /\  ( A  mod  8 )  =  ( -u 1  mod  8 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 1  x.  B
)  mod  8 ) )
3425, 27, 28, 29, 32, 33syl221anc 1196 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( A  x.  B )  mod  8 )  =  ( ( -u 1  x.  B )  mod  8
) )
3519ad2antlr 709 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  B  e.  CC )
3635mulm1d 9490 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( -u 1  x.  B )  =  -u B )
3736oveq1d 6099 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( -u 1  x.  B )  mod  8 )  =  ( -u B  mod  8 ) )
3834, 37eqtrd 2470 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( A  x.  B )  mod  8 )  =  (
-u B  mod  8
) )
3938eleq1d 2504 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
40 znegcl 10318 . . . . . . . 8  |-  ( B  e.  ZZ  ->  -u B  e.  ZZ )
41 oveq1 6091 . . . . . . . . . . 11  |-  ( x  =  -u B  ->  (
x  mod  8 )  =  ( -u B  mod  8 ) )
4241eleq1d 2504 . . . . . . . . . 10  |-  ( x  =  -u B  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
43 negeq 9303 . . . . . . . . . . . 12  |-  ( x  =  -u B  ->  -u x  =  -u -u B )
4443oveq1d 6099 . . . . . . . . . . 11  |-  ( x  =  -u B  ->  ( -u x  mod  8 )  =  ( -u -u B  mod  8 ) )
4544eleq1d 2504 . . . . . . . . . 10  |-  ( x  =  -u B  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) )
4642, 45imbi12d 313 . . . . . . . . 9  |-  ( x  =  -u B  ->  (
( ( x  mod  8 )  e.  {
1 ,  7 }  ->  ( -u x  mod  8 )  e.  {
1 ,  7 } )  <->  ( ( -u B  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) ) )
47 zcn 10292 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
48 neg1cn 10072 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  e.  CC
49 mulcom 9081 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  -u 1  e.  CC )  ->  ( x  x.  -u 1 )  =  ( -u 1  x.  x ) )
5048, 49mpan2 654 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
x  x.  -u 1
)  =  ( -u
1  x.  x ) )
51 mulm1 9480 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  ( -u 1  x.  x )  =  -u x )
5250, 51eqtrd 2470 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
x  x.  -u 1
)  =  -u x
)
5347, 52syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  x.  -u 1
)  =  -u x
)
5453adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  x.  -u 1 )  = 
-u x )
5554oveq1d 6099 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  (
-u x  mod  8
) )
56 zre 10291 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  RR )
5756adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  x  e.  RR )
585a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  1  e.  RR )
59 1z 10316 . . . . . . . . . . . . . . . . 17  |-  1  e.  ZZ
60 znegcl 10318 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
6159, 60ax-mp 5 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  ZZ
6261a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  -u 1  e.  ZZ )
6310a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  8  e.  RR+ )
64 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  mod  8 )  =  1 )
6564, 15syl6eqr 2488 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( x  mod  8 )  =  ( 1  mod  8 ) )
66 modmul1 11284 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  1  e.  RR )  /\  ( -u 1  e.  ZZ  /\  8  e.  RR+ )  /\  (
x  mod  8 )  =  ( 1  mod  8 ) )  -> 
( ( x  x.  -u 1 )  mod  8 )  =  ( ( 1  x.  -u 1
)  mod  8 ) )
6757, 58, 62, 63, 65, 66syl221anc 1196 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  ( ( 1  x.  -u 1
)  mod  8 ) )
6855, 67eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( -u x  mod  8 )  =  ( ( 1  x.  -u 1
)  mod  8 ) )
6948mulid2i 9098 . . . . . . . . . . . . . . 15  |-  ( 1  x.  -u 1 )  = 
-u 1
7069oveq1i 6094 . . . . . . . . . . . . . 14  |-  ( ( 1  x.  -u 1
)  mod  8 )  =  ( -u 1  mod  8 )
7170, 31eqtri 2458 . . . . . . . . . . . . 13  |-  ( ( 1  x.  -u 1
)  mod  8 )  =  7
7268, 71syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  1 )  ->  ( -u x  mod  8 )  =  7 )
7372ex 425 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  =  1  -> 
( -u x  mod  8
)  =  7 ) )
7453adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  x.  -u 1 )  = 
-u x )
7574oveq1d 6099 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  (
-u x  mod  8
) )
7656adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  x  e.  RR )
7726a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  -u 1  e.  RR )
7861a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  -u 1  e.  ZZ )
7910a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  8  e.  RR+ )
80 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  mod  8 )  =  7 )
8180, 31syl6eqr 2488 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( x  mod  8 )  =  (
-u 1  mod  8
) )
82 modmul1 11284 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  -u 1  e.  RR )  /\  ( -u 1  e.  ZZ  /\  8  e.  RR+ )  /\  (
x  mod  8 )  =  ( -u 1  mod  8 ) )  -> 
( ( x  x.  -u 1 )  mod  8 )  =  ( ( -u 1  x.  -u 1 )  mod  8 ) )
8376, 77, 78, 79, 81, 82syl221anc 1196 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( ( x  x.  -u 1 )  mod  8 )  =  ( ( -u 1  x.  -u 1 )  mod  8 ) )
8475, 83eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( -u x  mod  8 )  =  ( ( -u 1  x.  -u 1 )  mod  8 ) )
8548mulm1i 9483 . . . . . . . . . . . . . . . 16  |-  ( -u
1  x.  -u 1
)  =  -u -u 1
86 ax-1cn 9053 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
8786negnegi 9375 . . . . . . . . . . . . . . . 16  |-  -u -u 1  =  1
8885, 87eqtri 2458 . . . . . . . . . . . . . . 15  |-  ( -u
1  x.  -u 1
)  =  1
8988oveq1i 6094 . . . . . . . . . . . . . 14  |-  ( (
-u 1  x.  -u 1
)  mod  8 )  =  ( 1  mod  8 )
9089, 15eqtri 2458 . . . . . . . . . . . . 13  |-  ( (
-u 1  x.  -u 1
)  mod  8 )  =  1
9184, 90syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  mod  8
)  =  7 )  ->  ( -u x  mod  8 )  =  1 )
9291ex 425 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  =  7  -> 
( -u x  mod  8
)  =  1 ) )
9373, 92orim12d 813 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  (
( ( x  mod  8 )  =  1  \/  ( x  mod  8 )  =  7 )  ->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) ) )
94 ovex 6109 . . . . . . . . . . 11  |-  ( x  mod  8 )  e. 
_V
9594elpr 3834 . . . . . . . . . 10  |-  ( ( x  mod  8 )  e.  { 1 ,  7 }  <->  ( (
x  mod  8 )  =  1  \/  (
x  mod  8 )  =  7 ) )
96 ovex 6109 . . . . . . . . . . . 12  |-  ( -u x  mod  8 )  e. 
_V
9796elpr 3834 . . . . . . . . . . 11  |-  ( (
-u x  mod  8
)  e.  { 1 ,  7 }  <->  ( ( -u x  mod  8 )  =  1  \/  ( -u x  mod  8 )  =  7 ) )
98 orcom 378 . . . . . . . . . . 11  |-  ( ( ( -u x  mod  8 )  =  1  \/  ( -u x  mod  8 )  =  7 )  <->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) )
9997, 98bitri 242 . . . . . . . . . 10  |-  ( (
-u x  mod  8
)  e.  { 1 ,  7 }  <->  ( ( -u x  mod  8 )  =  7  \/  ( -u x  mod  8 )  =  1 ) )
10093, 95, 993imtr4g 263 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  ->  (
-u x  mod  8
)  e.  { 1 ,  7 } ) )
10146, 100vtoclga 3019 . . . . . . . 8  |-  ( -u B  e.  ZZ  ->  ( ( -u B  mod  8 )  e.  {
1 ,  7 }  ->  ( -u -u B  mod  8 )  e.  {
1 ,  7 } ) )
10240, 101syl 16 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  ->  (
-u -u B  mod  8
)  e.  { 1 ,  7 } ) )
10319negnegd 9407 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  -u -u B  =  B )
104103oveq1d 6099 . . . . . . . 8  |-  ( B  e.  ZZ  ->  ( -u -u B  mod  8
)  =  ( B  mod  8 ) )
105104eleq1d 2504 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
( -u -u B  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
106102, 105sylibd 207 . . . . . 6  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  ->  ( B  mod  8 )  e.  { 1 ,  7 } ) )
107 oveq1 6091 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  mod  8 )  =  ( B  mod  8 ) )
108107eleq1d 2504 . . . . . . . 8  |-  ( x  =  B  ->  (
( x  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
109 negeq 9303 . . . . . . . . . 10  |-  ( x  =  B  ->  -u x  =  -u B )
110109oveq1d 6099 . . . . . . . . 9  |-  ( x  =  B  ->  ( -u x  mod  8 )  =  ( -u B  mod  8 ) )
111110eleq1d 2504 . . . . . . . 8  |-  ( x  =  B  ->  (
( -u x  mod  8
)  e.  { 1 ,  7 }  <->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) )
112108, 111imbi12d 313 . . . . . . 7  |-  ( x  =  B  ->  (
( ( x  mod  8 )  e.  {
1 ,  7 }  ->  ( -u x  mod  8 )  e.  {
1 ,  7 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -u B  mod  8 )  e.  {
1 ,  7 } ) ) )
113112, 100vtoclga 3019 . . . . . 6  |-  ( B  e.  ZZ  ->  (
( B  mod  8
)  e.  { 1 ,  7 }  ->  (
-u B  mod  8
)  e.  { 1 ,  7 } ) )
114106, 113impbid 185 . . . . 5  |-  ( B  e.  ZZ  ->  (
( -u B  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
115114ad2antlr 709 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( ( -u B  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
11639, 115bitrd 246 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  =  7 )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
11724, 116jaodan 762 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )  -> 
( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 }  <-> 
( B  mod  8
)  e.  { 1 ,  7 } ) )
1182, 117sylan2b 463 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   {cpr 3817  (class class class)co 6084   CCcc 8993   RRcr 8994   1c1 8996    x. cmul 9000   -ucneg 9297   3c3 10055   5c5 10057   7c7 10059   8c8 10060   ZZcz 10287   RR+crp 10617    mod cmo 11255
This theorem is referenced by:  lgsdir2  21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fl 11207  df-mod 11256
  Copyright terms: Public domain W3C validator