MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl2 Unicode version

Theorem lgsfcl2 20557
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 } although this representation is less useful to us). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgsfcl2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Distinct variable groups:    x, n, A    x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgsfcl2
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 10051 . . . . . . . 8  |-  0  e.  ZZ
2 0le1 9313 . . . . . . . 8  |-  0  <_  1
3 fveq2 5541 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( abs `  x )  =  ( abs `  0
) )
4 abs0 11786 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
53, 4syl6eq 2344 . . . . . . . . . 10  |-  ( x  =  0  ->  ( abs `  x )  =  0 )
65breq1d 4049 . . . . . . . . 9  |-  ( x  =  0  ->  (
( abs `  x
)  <_  1  <->  0  <_  1 ) )
7 lgsfcl2.z . . . . . . . . 9  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
86, 7elrab2 2938 . . . . . . . 8  |-  ( 0  e.  Z  <->  ( 0  e.  ZZ  /\  0  <_  1 ) )
91, 2, 8mpbir2an 886 . . . . . . 7  |-  0  e.  Z
10 1z 10069 . . . . . . . . 9  |-  1  e.  ZZ
11 1le1 9412 . . . . . . . . 9  |-  1  <_  1
12 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
13 abs1 11798 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1412, 13syl6eq 2344 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
1514breq1d 4049 . . . . . . . . . 10  |-  ( x  =  1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
1615, 7elrab2 2938 . . . . . . . . 9  |-  ( 1  e.  Z  <->  ( 1  e.  ZZ  /\  1  <_  1 ) )
1710, 11, 16mpbir2an 886 . . . . . . . 8  |-  1  e.  Z
18 znegcl 10071 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
1910, 18ax-mp 8 . . . . . . . . 9  |-  -u 1  e.  ZZ
20 fveq2 5541 . . . . . . . . . . . 12  |-  ( x  =  -u 1  ->  ( abs `  x )  =  ( abs `  -u 1
) )
21 ax-1cn 8811 . . . . . . . . . . . . . 14  |-  1  e.  CC
2221absnegi 11899 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  ( abs `  1
)
2322, 13eqtri 2316 . . . . . . . . . . . 12  |-  ( abs `  -u 1 )  =  1
2420, 23syl6eq 2344 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  ( abs `  x )  =  1 )
2524breq1d 4049 . . . . . . . . . 10  |-  ( x  =  -u 1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
2625, 7elrab2 2938 . . . . . . . . 9  |-  ( -u
1  e.  Z  <->  ( -u 1  e.  ZZ  /\  1  <_ 
1 ) )
2719, 11, 26mpbir2an 886 . . . . . . . 8  |-  -u 1  e.  Z
2817, 27keepel 3635 . . . . . . 7  |-  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  Z
299, 28keepel 3635 . . . . . 6  |-  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  Z
3029a1i 10 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  n  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
31 simpl1 958 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  A  e.  ZZ )
3231ad2antrr 706 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  A  e.  ZZ )
33 simplr 731 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  Prime )
34 simpr 447 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  -.  n  = 
2 )
35 df-ne 2461 . . . . . . . 8  |-  ( n  =/=  2  <->  -.  n  =  2 )
3634, 35sylibr 203 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  =/=  2
)
37 eldifsn 3762 . . . . . . 7  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
3833, 36, 37sylanbrc 645 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  ( Prime  \  { 2 } ) )
397lgslem4 20554 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 )  e.  Z )
4032, 38, 39syl2anc 642 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 )  e.  Z
)
4130, 40ifclda 3605 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  e.  Z
)
42 simpr 447 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  Prime )
43 simpll2 995 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  e.  ZZ )
44 simpll3 996 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  =/=  0 )
45 pczcl 12917 . . . . 5  |-  ( ( n  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( n  pCnt  N
)  e.  NN0 )
4642, 43, 44, 45syl12anc 1180 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
n  pCnt  N )  e.  NN0 )
47 ssrab2 3271 . . . . . . 7  |-  { x  e.  ZZ  |  ( abs `  x )  <_  1 }  C_  ZZ
487, 47eqsstri 3221 . . . . . 6  |-  Z  C_  ZZ
49 zsscn 10048 . . . . . 6  |-  ZZ  C_  CC
5048, 49sstri 3201 . . . . 5  |-  Z  C_  CC
517lgslem3 20553 . . . . 5  |-  ( ( a  e.  Z  /\  b  e.  Z )  ->  ( a  x.  b
)  e.  Z )
5250, 51, 17expcllem 11130 . . . 4  |-  ( ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  e.  Z  /\  ( n  pCnt  N )  e.  NN0 )  -> 
( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
)  e.  Z )
5341, 46, 52syl2anc 642 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  e.  Z
)
5417a1i 10 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  -.  n  e.  Prime )  -> 
1  e.  Z )
5553, 54ifclda 3605 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  e.  Z )
56 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
5755, 56fmptd 5700 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560    \ cdif 3162   ifcif 3578   {csn 3653   {cpr 3654   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   7c7 9816   8c8 9817   NN0cn0 9981   ZZcz 10040    mod cmo 10989   ^cexp 11120   abscabs 11735    || cdivides 12547   Primecprime 12774    pCnt cpc 12905
This theorem is referenced by:  lgscllem  20558  lgsfcl  20559  lgsfle1  20560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-phi 12850  df-pc 12906
  Copyright terms: Public domain W3C validator