MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Unicode version

Theorem lgslem4 21075
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 } although this representation is less useful to us). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 731 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  A  e.  ZZ )
2 oddprm 13181 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
43nnnn0d 10266 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
5 zexpcl 11388 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
61, 4, 5syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
76zred 10367 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
8 0re 9083 . . . . . . . 8  |-  0  e.  RR
98a1i 11 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  RR )
10 1re 9082 . . . . . . . 8  |-  1  e.  RR
1110a1i 11 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  e.  RR )
12 eldifi 3461 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
1312ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  Prime )
14 prmuz2 13089 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
1513, 14syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
16 eluz2b2 10540 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
1715, 16sylib 189 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  e.  NN  /\  1  <  P ) )
1817simpld 446 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  NN )
1918nnrpd 10639 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR+ )
20 0z 10285 . . . . . . . . . 10  |-  0  e.  ZZ
2120a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  ZZ )
22 simpr 448 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  A )
23 dvdsval3 12848 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2418, 1, 23syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2522, 24mpbid 202 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  0 )
26 0mod 11264 . . . . . . . . . . 11  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
2719, 26syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0  mod  P )  =  0 )
2825, 27eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  ( 0  mod  P
) )
29 modexp 11506 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  0  e.  ZZ )  /\  ( ( ( P  -  1 )  /  2 )  e. 
NN0  /\  P  e.  RR+ )  /\  ( A  mod  P )  =  ( 0  mod  P
) )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
301, 21, 4, 19, 28, 29syl221anc 1195 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
3130expd 11531 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0 ^ ( ( P  -  1 )  /  2 ) )  =  0 )
3231oveq1d 6088 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( 0 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
3330, 32eqtrd 2467 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
34 modadd1 11270 . . . . . . 7  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  e.  RR  /\  0  e.  RR )  /\  ( 1  e.  RR  /\  P  e.  RR+ )  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( 0  +  1 )  mod  P ) )
357, 9, 11, 19, 33, 34syl221anc 1195 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( ( 0  +  1 )  mod 
P ) )
36 0p1e1 10085 . . . . . . 7  |-  ( 0  +  1 )  =  1
3736oveq1i 6083 . . . . . 6  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
3835, 37syl6eq 2483 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( 1  mod 
P ) )
3918nnred 10007 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR )
4017simprd 450 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
41 1mod 11265 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
4239, 40, 41syl2anc 643 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
1  mod  P )  =  1 )
4338, 42eqtrd 2467 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
4443oveq1d 6088 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
45 1m1e0 10060 . . . 4  |-  ( 1  -  1 )  =  0
46 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
4746lgslem2 21073 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
4847simp2i 967 . . . 4  |-  0  e.  Z
4945, 48eqeltri 2505 . . 3  |-  ( 1  -  1 )  e.  Z
5044, 49syl6eqel 2523 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
51 lgslem1 21072 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
52 elpri 3826 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
53 oveq1 6080 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
54 df-neg 9286 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
5547simp1i 966 . . . . . . 7  |-  -u 1  e.  Z
5654, 55eqeltrri 2506 . . . . . 6  |-  ( 0  -  1 )  e.  Z
5753, 56syl6eqel 2523 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
58 oveq1 6080 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
59 2m1e1 10087 . . . . . . 7  |-  ( 2  -  1 )  =  1
6047simp3i 968 . . . . . . 7  |-  1  e.  Z
6159, 60eqeltri 2505 . . . . . 6  |-  ( 2  -  1 )  e.  Z
6258, 61syl6eqel 2523 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6357, 62jaoi 369 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
6451, 52, 633syl 19 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
65643expa 1153 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6650, 65pm2.61dan 767 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701    \ cdif 3309   {csn 3806   {cpr 3807   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283   -ucneg 9284    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604    mod cmo 11242   ^cexp 11374   abscabs 12031    || cdivides 12844   Primecprime 13071
This theorem is referenced by:  lgsfcl2  21078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-gcd 12999  df-prm 13072  df-phi 13147
  Copyright terms: Public domain W3C validator