MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsneg Structured version   Unicode version

Theorem lgsneg 21095
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  / L N ) ) )

Proof of Theorem lgsneg
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3737 . . . . . . . . 9  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
21adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
32oveq1d 6088 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
4 oveq2 6081 . . . . . . . . . 10  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
5 neg1cn 10059 . . . . . . . . . . . 12  |-  -u 1  e.  CC
65mulm1i 9470 . . . . . . . . . . 11  |-  ( -u
1  x.  -u 1
)  =  -u -u 1
7 ax-1cn 9040 . . . . . . . . . . . 12  |-  1  e.  CC
87negnegi 9362 . . . . . . . . . . 11  |-  -u -u 1  =  1
96, 8eqtri 2455 . . . . . . . . . 10  |-  ( -u
1  x.  -u 1
)  =  1
104, 9syl6eq 2483 . . . . . . . . 9  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  1 )
11 oveq2 6081 . . . . . . . . . 10  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
127mulm1i 9470 . . . . . . . . . 10  |-  ( -u
1  x.  1 )  =  -u 1
1311, 12syl6eq 2483 . . . . . . . . 9  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
1410, 13ifsb 3740 . . . . . . . 8  |-  ( -u
1  x.  if ( N  <  0 , 
-u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 )
15 simpr 448 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  A  <  0 )
1615biantrud 494 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
1716ifbid 3749 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
1817oveq2d 6089 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
19 simpl2 961 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  ZZ )
2019zred 10367 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  RR )
21 0re 9083 . . . . . . . . . . . . 13  |-  0  e.  RR
22 ltlen 9167 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  0  e.  RR )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2320, 21, 22sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
24 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  =/=  0 )
2524necomd 2681 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
0  =/=  N )
2625biantrud 494 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2723, 26bitr4d 248 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  N  <_  0 ) )
2820le0neg1d 9590 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  0  <_  -u N ) )
2920renegcld 9456 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  -u N  e.  RR )
30 lenlt 9146 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u N  e.  RR )  ->  ( 0  <_  -u N  <->  -.  -u N  <  0 ) )
3121, 29, 30sylancr 645 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( 0  <_  -u N  <->  -.  -u N  <  0
) )
3227, 28, 313bitrd 271 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  -.  -u N  <  0
) )
3332ifbid 3749 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -.  -u N  <  0 ,  1 , 
-u 1 ) )
34 ifnot 3769 . . . . . . . . 9  |-  if ( -.  -u N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 )
3533, 34syl6eq 2483 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
3614, 18, 353eqtr3a 2491 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  =  if (
-u N  <  0 ,  -u 1 ,  1 ) )
3715biantrud 494 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u N  <  0  <->  (
-u N  <  0  /\  A  <  0
) ) )
3837ifbid 3749 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -u N  <  0 ,  -u 1 ,  1 )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
393, 36, 383eqtrd 2471 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
40 1t1e1 10118 . . . . . . 7  |-  ( 1  x.  1 )  =  1
41 iffalse 3738 . . . . . . . . 9  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
4241adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
43 simpr 448 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
4443intnand 883 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
45 iffalse 3738 . . . . . . . . 9  |-  ( -.  ( N  <  0  /\  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
4644, 45syl 16 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
4742, 46oveq12d 6091 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
4843intnand 883 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( -u N  <  0  /\  A  <  0 ) )
49 iffalse 3738 . . . . . . . 8  |-  ( -.  ( -u N  <  0  /\  A  <  0 )  ->  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
5048, 49syl 16 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( -u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
5140, 47, 503eqtr4a 2493 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
5239, 51pm2.61dan 767 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
5352eqcomd 2440 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) ) )
54 simpr 448 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  n  e.  Prime )
55 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  ZZ )
56 zq 10572 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  QQ )
5755, 56syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  QQ )
58 pcneg 13239 . . . . . . . . . 10  |-  ( ( n  e.  Prime  /\  N  e.  QQ )  ->  (
n  pCnt  -u N )  =  ( n  pCnt  N ) )
5954, 57, 58syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( n  pCnt  -u N
)  =  ( n 
pCnt  N ) )
6059oveq2d 6089 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( ( A  / L n ) ^
( n  pCnt  -u N
) )  =  ( ( A  / L
n ) ^ (
n  pCnt  N )
) )
6160ifeq1da 3756 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
6261mpteq2dv 4288 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
6362seqeq3d 11323 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) )  =  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
64 zcn 10279 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
65643ad2ant2 979 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
6665absnegd 12243 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  -u N )  =  ( abs `  N
) )
6763, 66fveq12d 5726 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) )
6853, 67oveq12d 6091 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
695, 7keepel 3788 . . . . 5  |-  if ( A  <  0 , 
-u 1 ,  1 )  e.  CC
7069a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  e.  CC )
715, 7keepel 3788 . . . . 5  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  e.  CC
7271a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
73 nnabscl 12121 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
74733adant1 975 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  NN )
75 nnuz 10513 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
7674, 75syl6eleq 2525 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  ( ZZ>= `  1 )
)
77 eqid 2435 . . . . . . . 8  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
7877lgsfcl3 21093 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
79 elfznn 11072 . . . . . . 7  |-  ( x  e.  ( 1 ... ( abs `  N
) )  ->  x  e.  NN )
80 ffvelrn 5860 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  x  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  x )  e.  ZZ )
8178, 79, 80syl2an 464 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  x  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  x )  e.  ZZ )
82 zmulcl 10316 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
8382adantl 453 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
8476, 81, 83seqcl 11335 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
8584zcnd 10368 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
8670, 72, 85mulassd 9103 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
8768, 86eqtrd 2467 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( if ( A  <  0 ,  -u
1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
88 simp1 957 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
89 znegcl 10305 . . . 4  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
90893ad2ant2 979 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  e.  ZZ )
91 simp3 959 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  =/=  0 )
9265, 91negne0d 9401 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  =/=  0 )
93 eqid 2435 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )
9493lgsval4 21092 . . 3  |-  ( ( A  e.  ZZ  /\  -u N  e.  ZZ  /\  -u N  =/=  0 )  ->  ( A  / L -u N )  =  ( if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) ) ) `  ( abs `  -u N ) ) ) )
9588, 90, 92, 94syl3anc 1184 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L -u N
)  =  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) ) )
9677lgsval4 21092 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
9796oveq2d 6089 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  / L N ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
9887, 95, 973eqtr4d 2477 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  / L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   ifcif 3731   class class class wbr 4204    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    <_ cle 9113   -ucneg 9284   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480   QQcq 10566   ...cfz 11035    seq cseq 11315   ^cexp 11374   abscabs 12031   Primecprime 13071    pCnt cpc 13202    / Lclgs 21070
This theorem is referenced by:  lgsneg1  21096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-gcd 12999  df-prm 13072  df-phi 13147  df-pc 13203  df-lgs 21071
  Copyright terms: Public domain W3C validator