MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Unicode version

Theorem lgsqrlem4 20995
Description: Lemma for lgsqr 20997. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y  |-  Y  =  (ℤ/n `  P )
lgsqr.s  |-  S  =  (Poly1 `  Y )
lgsqr.b  |-  B  =  ( Base `  S
)
lgsqr.d  |-  D  =  ( deg1  `  Y )
lgsqr.o  |-  O  =  (eval1 `  Y )
lgsqr.e  |-  .^  =  (.g
`  (mulGrp `  S )
)
lgsqr.x  |-  X  =  (var1 `  Y )
lgsqr.m  |-  .-  =  ( -g `  S )
lgsqr.u  |-  .1.  =  ( 1r `  S )
lgsqr.t  |-  T  =  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )
lgsqr.l  |-  L  =  ( ZRHom `  Y
)
lgsqr.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgsqr.g  |-  G  =  ( y  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
y ^ 2 ) ) )
lgsqr.3  |-  ( ph  ->  A  e.  ZZ )
lgsqr.4  |-  ( ph  ->  ( A  / L P )  =  1 )
Assertion
Ref Expression
lgsqrlem4  |-  ( ph  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
Distinct variable groups:    x, A    x, G    y, O    x, y, P    ph, x, y   
y, T    x, L, y    x, Y, y
Allowed substitution hints:    A( y)    B( x, y)    D( x, y)    S( x, y)    T( x)    .1. ( x, y)    .^ ( x, y)    G( y)    .- ( x, y)    O( x)    X( x, y)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7  |-  Y  =  (ℤ/n `  P )
2 lgsqr.s . . . . . . 7  |-  S  =  (Poly1 `  Y )
3 lgsqr.b . . . . . . 7  |-  B  =  ( Base `  S
)
4 lgsqr.d . . . . . . 7  |-  D  =  ( deg1  `  Y )
5 lgsqr.o . . . . . . 7  |-  O  =  (eval1 `  Y )
6 lgsqr.e . . . . . . 7  |-  .^  =  (.g
`  (mulGrp `  S )
)
7 lgsqr.x . . . . . . 7  |-  X  =  (var1 `  Y )
8 lgsqr.m . . . . . . 7  |-  .-  =  ( -g `  S )
9 lgsqr.u . . . . . . 7  |-  .1.  =  ( 1r `  S )
10 lgsqr.t . . . . . . 7  |-  T  =  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )
11 lgsqr.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
12 lgsqr.1 . . . . . . 7  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
13 lgsqr.g . . . . . . 7  |-  G  =  ( y  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
y ^ 2 ) ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 20993 . . . . . 6  |-  ( ph  ->  G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-> ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
15 fvex 5682 . . . . . . . . . . . 12  |-  ( O `
 T )  e. 
_V
1615cnvex 5346 . . . . . . . . . . 11  |-  `' ( O `  T )  e.  _V
17 imaexg 5157 . . . . . . . . . . 11  |-  ( `' ( O `  T
)  e.  _V  ->  ( `' ( O `  T ) " {
( 0g `  Y
) } )  e. 
_V )
1816, 17ax-mp 8 . . . . . . . . . 10  |-  ( `' ( O `  T
) " { ( 0g `  Y ) } )  e.  _V
1918f1dom 7065 . . . . . . . . 9  |-  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  ->  (
1 ... ( ( P  -  1 )  / 
2 ) )  ~<_  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
2014, 19syl 16 . . . . . . . 8  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  ~<_  ( `' ( O `  T )
" { ( 0g
`  Y ) } ) )
21 eqid 2387 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
22 eqid 2387 . . . . . . . . . . . 12  |-  ( 0g
`  S )  =  ( 0g `  S
)
2312eldifad 3275 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Prime )
241znfld 16764 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  Y  e. Field
)
2523, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e. Field )
26 fldidom 16292 . . . . . . . . . . . . 13  |-  ( Y  e. Field  ->  Y  e. IDomn )
2725, 26syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e. IDomn )
28 isidom 16291 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
2928simplbi 447 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e. IDomn  ->  Y  e.  CRing )
3027, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Y  e.  CRing )
31 crngrng 15601 . . . . . . . . . . . . . . . . 17  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
3230, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Y  e.  Ring )
332ply1rng 16569 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  S  e. 
Ring )
3432, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  e.  Ring )
35 rnggrp 15596 . . . . . . . . . . . . . . 15  |-  ( S  e.  Ring  ->  S  e. 
Grp )
3634, 35syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  Grp )
37 eqid 2387 . . . . . . . . . . . . . . . . 17  |-  (mulGrp `  S )  =  (mulGrp `  S )
3837rngmgp 15597 . . . . . . . . . . . . . . . 16  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  Mnd )
3934, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (mulGrp `  S )  e.  Mnd )
40 oddprm 13116 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
4112, 40syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
4241nnnn0d 10206 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
437, 2, 3vr1cl 16538 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  X  e.  B )
4432, 43syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  B )
4537, 3mgpbas 15581 . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  (mulGrp `  S ) )
4645, 6mulgnn0cl 14833 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  S )  e.  Mnd  /\  ( ( P  -  1 )  /  2 )  e. 
NN0  /\  X  e.  B )  ->  (
( ( P  - 
1 )  /  2
)  .^  X )  e.  B )
4739, 42, 44, 46syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 )  .^  X
)  e.  B )
483, 9rngidcl 15611 . . . . . . . . . . . . . . 15  |-  ( S  e.  Ring  ->  .1.  e.  B )
4934, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  .1.  e.  B )
503, 8grpsubcl 14796 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Grp  /\  ( ( ( P  -  1 )  / 
2 )  .^  X
)  e.  B  /\  .1.  e.  B )  -> 
( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )  e.  B )
5136, 47, 49, 50syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( P  -  1 )  /  2 )  .^  X )  .-  .1.  )  e.  B )
5210, 51syl5eqel 2471 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  B )
5310fveq2i 5671 . . . . . . . . . . . . . . . 16  |-  ( D `
 T )  =  ( D `  (
( ( ( P  -  1 )  / 
2 )  .^  X
)  .-  .1.  )
)
5441nngt0d 9975 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  0  <  ( ( P  -  1 )  /  2 ) )
55 eqid 2387 . . . . . . . . . . . . . . . . . . . . . 22  |-  (algSc `  S )  =  (algSc `  S )
56 eqid 2387 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
572, 55, 56, 9ply1scl1 16610 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e.  Ring  ->  ( (algSc `  S ) `  ( 1r `  Y ) )  =  .1.  )
5832, 57syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( (algSc `  S
) `  ( 1r `  Y ) )  =  .1.  )
5958fveq2d 5672 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( D `  (
(algSc `  S ) `  ( 1r `  Y
) ) )  =  ( D `  .1.  ) )
60 eqid 2387 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Base `  Y )  =  (
Base `  Y )
6160, 56rngidcl 15611 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e.  Ring  ->  ( 1r
`  Y )  e.  ( Base `  Y
) )
6232, 61syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1r `  Y
)  e.  ( Base `  Y ) )
6328simprbi 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y  e. IDomn  ->  Y  e. Domn )
64 domnnzr 16282 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Y  e. Domn  ->  Y  e. NzRing )
6563, 64syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
6627, 65syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Y  e. NzRing )
6756, 21nzrnz 16258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Y  e. NzRing  ->  ( 1r `  Y )  =/=  ( 0g `  Y ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1r `  Y
)  =/=  ( 0g
`  Y ) )
694, 2, 60, 55, 21deg1scl 19903 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Y  e.  Ring  /\  ( 1r `  Y )  e.  ( Base `  Y
)  /\  ( 1r `  Y )  =/=  ( 0g `  Y ) )  ->  ( D `  ( (algSc `  S ) `  ( 1r `  Y
) ) )  =  0 )
7032, 62, 68, 69syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( D `  (
(algSc `  S ) `  ( 1r `  Y
) ) )  =  0 )
7159, 70eqtr3d 2421 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D `  .1.  )  =  0 )
724, 2, 7, 37, 6deg1pw 19910 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Y  e. NzRing  /\  (
( P  -  1 )  /  2 )  e.  NN0 )  -> 
( D `  (
( ( P  - 
1 )  /  2
)  .^  X )
)  =  ( ( P  -  1 )  /  2 ) )
7366, 42, 72syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( D `  (
( ( P  - 
1 )  /  2
)  .^  X )
)  =  ( ( P  -  1 )  /  2 ) )
7454, 71, 733brtr4d 4183 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( D `  .1.  )  <  ( D `  ( ( ( P  -  1 )  / 
2 )  .^  X
) ) )
752, 4, 32, 3, 8, 47, 49, 74deg1sub 19898 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( D `  (
( ( ( P  -  1 )  / 
2 )  .^  X
)  .-  .1.  )
)  =  ( D `
 ( ( ( P  -  1 )  /  2 )  .^  X ) ) )
7653, 75syl5eq 2431 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( D `  T
)  =  ( D `
 ( ( ( P  -  1 )  /  2 )  .^  X ) ) )
7776, 73eqtrd 2419 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D `  T
)  =  ( ( P  -  1 )  /  2 ) )
7877, 42eqeltrd 2461 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  T
)  e.  NN0 )
794, 2, 22, 3deg1nn0clb 19880 . . . . . . . . . . . . . 14  |-  ( ( Y  e.  Ring  /\  T  e.  B )  ->  ( T  =/=  ( 0g `  S )  <->  ( D `  T )  e.  NN0 ) )
8032, 52, 79syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  =/=  ( 0g `  S )  <->  ( D `  T )  e.  NN0 ) )
8178, 80mpbird 224 . . . . . . . . . . . 12  |-  ( ph  ->  T  =/=  ( 0g
`  S ) )
822, 3, 4, 5, 21, 22, 27, 52, 81fta1g 19957 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( D `  T ) )
8382, 77breqtrd 4177 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( ( P  -  1 )  / 
2 ) )
84 hashfz1 11557 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  e.  NN0  ->  ( # `  ( 1 ... (
( P  -  1 )  /  2 ) ) )  =  ( ( P  -  1 )  /  2 ) )
8542, 84syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  =  ( ( P  -  1 )  / 
2 ) )
8683, 85breqtrrd 4179 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) )
8718a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  _V )
88 hashbnd 11551 . . . . . . . . . . 11  |-  ( ( ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  _V  /\  (
( P  -  1 )  /  2 )  e.  NN0  /\  ( # `
 ( `' ( O `  T )
" { ( 0g
`  Y ) } ) )  <_  (
( P  -  1 )  /  2 ) )  ->  ( `' ( O `  T )
" { ( 0g
`  Y ) } )  e.  Fin )
8987, 42, 83, 88syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  Fin )
90 fzfid 11239 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
91 hashdom 11580 . . . . . . . . . 10  |-  ( ( ( `' ( O `
 T ) " { ( 0g `  Y ) } )  e.  Fin  /\  (
1 ... ( ( P  -  1 )  / 
2 ) )  e. 
Fin )  ->  (
( # `  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )  <_ 
( # `  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )  <-> 
( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
9289, 90, 91syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )  <_  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  <-> 
( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) ) )
9386, 92mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( `' ( O `
 T ) " { ( 0g `  Y ) } )  ~<_  ( 1 ... (
( P  -  1 )  /  2 ) ) )
94 sbth 7163 . . . . . . . 8  |-  ( ( ( 1 ... (
( P  -  1 )  /  2 ) )  ~<_  ( `' ( O `  T )
" { ( 0g
`  Y ) } )  /\  ( `' ( O `  T
) " { ( 0g `  Y ) } )  ~<_  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )  ->  ( 1 ... ( ( P  - 
1 )  /  2
) )  ~~  ( `' ( O `  T ) " {
( 0g `  Y
) } ) )
9520, 93, 94syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  ~~  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
96 f1finf1o 7271 . . . . . . 7  |-  ( ( ( 1 ... (
( P  -  1 )  /  2 ) )  ~~  ( `' ( O `  T
) " { ( 0g `  Y ) } )  /\  ( `' ( O `  T ) " {
( 0g `  Y
) } )  e. 
Fin )  ->  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  <->  G :
( 1 ... (
( P  -  1 )  /  2 ) ) -1-1-onto-> ( `' ( O `
 T ) " { ( 0g `  Y ) } ) ) )
9795, 89, 96syl2anc 643 . . . . . 6  |-  ( ph  ->  ( G : ( 1 ... ( ( P  -  1 )  /  2 ) )
-1-1-> ( `' ( O `
 T ) " { ( 0g `  Y ) } )  <-> 
G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } ) ) )
9814, 97mpbid 202 . . . . 5  |-  ( ph  ->  G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
99 f1ocnv 5627 . . . . 5  |-  ( G : ( 1 ... ( ( P  - 
1 )  /  2
) ) -1-1-onto-> ( `' ( O `
 T ) " { ( 0g `  Y ) } )  ->  `' G :
( `' ( O `
 T ) " { ( 0g `  Y ) } ) -1-1-onto-> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
100 f1of 5614 . . . . 5  |-  ( `' G : ( `' ( O `  T
) " { ( 0g `  Y ) } ) -1-1-onto-> ( 1 ... (
( P  -  1 )  /  2 ) )  ->  `' G : ( `' ( O `  T )
" { ( 0g
`  Y ) } ) --> ( 1 ... ( ( P  - 
1 )  /  2
) ) )
10198, 99, 1003syl 19 . . . 4  |-  ( ph  ->  `' G : ( `' ( O `  T
) " { ( 0g `  Y ) } ) --> ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
102 lgsqr.3 . . . . 5  |-  ( ph  ->  A  e.  ZZ )
103 lgsqr.4 . . . . 5  |-  ( ph  ->  ( A  / L P )  =  1 )
1041, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 102, 103lgsqrlem3 20994 . . . 4  |-  ( ph  ->  ( L `  A
)  e.  ( `' ( O `  T
) " { ( 0g `  Y ) } ) )
105101, 104ffvelrnd 5810 . . 3  |-  ( ph  ->  ( `' G `  ( L `  A ) )  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
106 elfzelz 10991 . . 3  |-  ( ( `' G `  ( L `
 A ) )  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  ( `' G `  ( L `
 A ) )  e.  ZZ )
107105, 106syl 16 . 2  |-  ( ph  ->  ( `' G `  ( L `  A ) )  e.  ZZ )
108 oveq1 6027 . . . . . . 7  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  (
x ^ 2 )  =  ( ( `' G `  ( L `
 A ) ) ^ 2 ) )
109108fveq2d 5672 . . . . . 6  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  ( L `  ( x ^ 2 ) )  =  ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) ) )
110 oveq1 6027 . . . . . . . . 9  |-  ( y  =  x  ->  (
y ^ 2 )  =  ( x ^
2 ) )
111110fveq2d 5672 . . . . . . . 8  |-  ( y  =  x  ->  ( L `  ( y ^ 2 ) )  =  ( L `  ( x ^ 2 ) ) )
112111cbvmptv 4241 . . . . . . 7  |-  ( y  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( y ^
2 ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( x ^ 2 ) ) )
11313, 112eqtri 2407 . . . . . 6  |-  G  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
x ^ 2 ) ) )
114 fvex 5682 . . . . . 6  |-  ( L `
 ( ( `' G `  ( L `
 A ) ) ^ 2 ) )  e.  _V
115109, 113, 114fvmpt 5745 . . . . 5  |-  ( ( `' G `  ( L `
 A ) )  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  ( G `  ( `' G `  ( L `  A ) ) )  =  ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) ) )
116105, 115syl 16 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  ( L `
 A ) ) )  =  ( L `
 ( ( `' G `  ( L `
 A ) ) ^ 2 ) ) )
117 f1ocnvfv2 5954 . . . . 5  |-  ( ( G : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( `' ( O `  T
) " { ( 0g `  Y ) } )  /\  ( L `  A )  e.  ( `' ( O `
 T ) " { ( 0g `  Y ) } ) )  ->  ( G `  ( `' G `  ( L `  A ) ) )  =  ( L `  A ) )
11898, 104, 117syl2anc 643 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  ( L `
 A ) ) )  =  ( L `
 A ) )
119116, 118eqtr3d 2421 . . 3  |-  ( ph  ->  ( L `  (
( `' G `  ( L `  A ) ) ^ 2 ) )  =  ( L `
 A ) )
120 prmnn 13009 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
12123, 120syl 16 . . . . 5  |-  ( ph  ->  P  e.  NN )
122121nnnn0d 10206 . . . 4  |-  ( ph  ->  P  e.  NN0 )
123 zsqcl 11379 . . . . 5  |-  ( ( `' G `  ( L `
 A ) )  e.  ZZ  ->  (
( `' G `  ( L `  A ) ) ^ 2 )  e.  ZZ )
124107, 123syl 16 . . . 4  |-  ( ph  ->  ( ( `' G `  ( L `  A
) ) ^ 2 )  e.  ZZ )
1251, 11zndvds 16753 . . . 4  |-  ( ( P  e.  NN0  /\  ( ( `' G `  ( L `  A
) ) ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) )  =  ( L `  A )  <-> 
P  ||  ( (
( `' G `  ( L `  A ) ) ^ 2 )  -  A ) ) )
126122, 124, 102, 125syl3anc 1184 . . 3  |-  ( ph  ->  ( ( L `  ( ( `' G `  ( L `  A
) ) ^ 2 ) )  =  ( L `  A )  <-> 
P  ||  ( (
( `' G `  ( L `  A ) ) ^ 2 )  -  A ) ) )
127119, 126mpbid 202 . 2  |-  ( ph  ->  P  ||  ( ( ( `' G `  ( L `  A ) ) ^ 2 )  -  A ) )
128108oveq1d 6035 . . . 4  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  (
( x ^ 2 )  -  A )  =  ( ( ( `' G `  ( L `
 A ) ) ^ 2 )  -  A ) )
129128breq2d 4165 . . 3  |-  ( x  =  ( `' G `  ( L `  A
) )  ->  ( P  ||  ( ( x ^ 2 )  -  A )  <->  P  ||  (
( ( `' G `  ( L `  A
) ) ^ 2 )  -  A ) ) )
130129rspcev 2995 . 2  |-  ( ( ( `' G `  ( L `  A ) )  e.  ZZ  /\  P  ||  ( ( ( `' G `  ( L `
 A ) ) ^ 2 )  -  A ) )  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
131107, 127, 130syl2anc 643 1  |-  ( ph  ->  E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650   _Vcvv 2899    \ cdif 3260   {csn 3757   class class class wbr 4153    e. cmpt 4207   `'ccnv 4817   "cima 4821   -->wf 5390   -1-1->wf1 5391   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020    ~~ cen 7042    ~<_ cdom 7043   Fincfn 7045   0cc0 8923   1c1 8924    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   2c2 9981   NN0cn0 10153   ZZcz 10214   ...cfz 10975   ^cexp 11309   #chash 11545    || cdivides 12779   Primecprime 13006   Basecbs 13396   0gc0g 13650   Mndcmnd 14611   Grpcgrp 14612   -gcsg 14615  .gcmg 14616  mulGrpcmgp 15575   Ringcrg 15587   CRingccrg 15588   1rcur 15589  Fieldcfield 15763  NzRingcnzr 16255  Domncdomn 16267  IDomncidom 16268  algSccascl 16298  var1cv1 16497  Poly1cpl1 16498  eval1ce1 16500   ZRHomczrh 16701  ℤ/nczn 16704   deg1 cdg1 19844    / Lclgs 20945
This theorem is referenced by:  lgsqrlem5  20996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-ec 6843  df-qs 6847  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-dvds 12780  df-gcd 12934  df-prm 13007  df-phi 13082  df-pc 13138  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-prds 13598  df-pws 13600  df-0g 13654  df-gsum 13655  df-imas 13661  df-divs 13662  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-nsg 14869  df-eqg 14870  df-ghm 14931  df-cntz 15043  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-rnghom 15746  df-drng 15764  df-field 15765  df-subrg 15793  df-lmod 15879  df-lss 15936  df-lsp 15975  df-sra 16171  df-rgmod 16172  df-lidl 16173  df-rsp 16174  df-2idl 16230  df-nzr 16256  df-rlreg 16270  df-domn 16271  df-idom 16272  df-assa 16299  df-asp 16300  df-ascl 16301  df-psr 16344  df-mvr 16345  df-mpl 16346  df-evls 16347  df-evl 16348  df-opsr 16352  df-psr1 16503  df-vr1 16504  df-ply1 16505  df-evl1 16507  df-coe1 16508  df-cnfld 16627  df-zrh 16705  df-zn 16708  df-mdeg 19845  df-deg1 19846  df-mon1 19920  df-uc1p 19921  df-q1p 19922  df-r1p 19923  df-lgs 20946
  Copyright terms: Public domain W3C validator