MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem1 Unicode version

Theorem lgsquad2lem1 20613
Description: Lemma for lgsquad2 20615. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem1.a  |-  ( ph  ->  A  e.  NN )
lgsquad2lem1.b  |-  ( ph  ->  B  e.  NN )
lgsquad2lem1.m  |-  ( ph  ->  ( A  x.  B
)  =  M )
lgsquad2lem1.1  |-  ( ph  ->  ( ( A  / L N )  x.  ( N  / L A ) )  =  ( -u
1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
lgsquad2lem1.2  |-  ( ph  ->  ( ( B  / L N )  x.  ( N  / L B ) )  =  ( -u
1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Assertion
Ref Expression
lgsquad2lem1  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )

Proof of Theorem lgsquad2lem1
StepHypRef Expression
1 lgsquad2lem1.m . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  M )
2 lgsquad2lem1.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  NN )
32nnzd 10132 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ZZ )
43zcnd 10134 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  CC )
5 ax-1cn 8811 . . . . . . . . . . . . . 14  |-  1  e.  CC
6 npcan 9076 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
74, 5, 6sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  - 
1 )  +  1 )  =  A )
8 lgsquad2lem1.b . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  NN )
98nnzd 10132 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ZZ )
109zcnd 10134 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
11 npcan 9076 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1210, 5, 11sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  - 
1 )  +  1 )  =  B )
137, 12oveq12d 5892 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( A  x.  B ) )
14 peano2zm 10078 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
153, 14syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1615zcnd 10134 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  1 )  e.  CC )
175a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
18 peano2zm 10078 . . . . . . . . . . . . . . . 16  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
199, 18syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  1 )  e.  ZZ )
2019zcnd 10134 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  -  1 )  e.  CC )
2116, 17, 20, 17muladdd 9253 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  - 
1 )  x.  1 ) ) ) )
22 1t1e1 9886 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
2322a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  x.  1 )  =  1 )
2423oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 ) )
2516mulid1d 8868 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A  - 
1 )  x.  1 )  =  ( A  -  1 ) )
2620mulid1d 8868 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  - 
1 )  x.  1 )  =  ( B  -  1 ) )
2725, 26oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A  -  1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) )  =  ( ( A  -  1 )  +  ( B  - 
1 ) ) )
2824, 27oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( 1  x.  1 ) )  +  ( ( ( A  - 
1 )  x.  1 )  +  ( ( B  -  1 )  x.  1 ) ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
2921, 28eqtrd 2328 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  -  1 )  +  1 )  x.  (
( B  -  1 )  +  1 ) )  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3013, 29eqtr3d 2330 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  B
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
311, 30eqtr3d 2330 . . . . . . . . . 10  |-  ( ph  ->  M  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
3231oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  -  1 ) )
3316, 20mulcld 8871 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC )
34 addcl 8835 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3533, 5, 34sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  e.  CC )
3616, 20addcld 8870 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  +  ( B  -  1 ) )  e.  CC )
3735, 36, 17addsubd 9194 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  -  1 )  =  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  -  1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
38 pncan 9073 . . . . . . . . . . 11  |-  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  e.  CC  /\  1  e.  CC )  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3933, 5, 38sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  1 )  -  1 )  =  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
4039oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  1 )  - 
1 )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4132, 37, 403eqtrd 2332 . . . . . . . 8  |-  ( ph  ->  ( M  -  1 )  =  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  -  1 ) ) ) )
4241oveq1d 5889 . . . . . . 7  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  +  ( ( A  -  1 )  +  ( B  - 
1 ) ) )  /  2 ) )
43 2cn 9832 . . . . . . . . 9  |-  2  e.  CC
4443a1i 10 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
45 2ne0 9845 . . . . . . . . 9  |-  2  =/=  0
4645a1i 10 . . . . . . . 8  |-  ( ph  ->  2  =/=  0 )
4733, 36, 44, 46divdird 9590 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  +  ( ( A  - 
1 )  +  ( B  -  1 ) ) )  /  2
)  =  ( ( ( ( A  - 
1 )  x.  ( B  -  1 ) )  /  2 )  +  ( ( ( A  -  1 )  +  ( B  - 
1 ) )  / 
2 ) ) )
4816, 20, 44, 46divassd 9587 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
4916, 44, 46divcan2d 9554 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  (
( A  -  1 )  /  2 ) )  =  ( A  -  1 ) )
5049oveq1d 5889 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( ( A  -  1 )  x.  ( ( B  -  1 )  / 
2 ) ) )
51 lgsquad2.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  2  ||  M
)
52 dvdsmul1 12566 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
533, 9, 52syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  ||  ( A  x.  B ) )
5453, 1breqtrd 4063 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  ||  M )
55 2z 10070 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
5655a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  2  e.  ZZ )
57 lgsquad2.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN )
5857nnzd 10132 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
59 dvdstr 12578 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  A  /\  A  ||  M )  ->  2  ||  M
) )
6056, 3, 58, 59syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  A  /\  A  ||  M
)  ->  2  ||  M ) )
6154, 60mpan2d 655 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  A  ->  2  ||  M ) )
6251, 61mtod 168 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  A
)
63 1z 10069 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
6463a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  ZZ )
65 2prm 12790 . . . . . . . . . . . . . 14  |-  2  e.  Prime
66 nprmdvds1 12806 . . . . . . . . . . . . . 14  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
6765, 66mp1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  1
)
68 omoe 12881 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( A  -  1 ) )
693, 62, 64, 67, 68syl22anc 1183 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( A  -  1 ) )
70 dvdsval2 12550 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( A  -  1 )  e.  ZZ )  -> 
( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7156, 46, 15, 70syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( A  -  1 )  <-> 
( ( A  - 
1 )  /  2
)  e.  ZZ ) )
7269, 71mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  ZZ )
7372zcnd 10134 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  - 
1 )  /  2
)  e.  CC )
74 dvdsmul2 12567 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  ||  ( A  x.  B ) )
753, 9, 74syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  ( A  x.  B ) )
7675, 1breqtrd 4063 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  ||  M )
77 dvdstr 12578 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  ZZ )  ->  (
( 2  ||  B  /\  B  ||  M )  ->  2  ||  M
) )
7856, 9, 58, 77syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  ||  B  /\  B  ||  M
)  ->  2  ||  M ) )
7976, 78mpan2d 655 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  ||  B  ->  2  ||  M ) )
8051, 79mtod 168 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  2  ||  B
)
81 omoe 12881 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  ZZ  /\ 
-.  2  ||  B
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( B  -  1 ) )
829, 80, 64, 67, 81syl22anc 1183 . . . . . . . . . . . 12  |-  ( ph  ->  2  ||  ( B  -  1 ) )
83 dvdsval2 12550 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( B  -  1 )  e.  ZZ )  -> 
( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8456, 46, 19, 83syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  ( B  -  1 )  <-> 
( ( B  - 
1 )  /  2
)  e.  ZZ ) )
8582, 84mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  ZZ )
8685zcnd 10134 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  - 
1 )  /  2
)  e.  CC )
8744, 73, 86mulassd 8874 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( ( A  - 
1 )  /  2
) )  x.  (
( B  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8848, 50, 873eqtr2d 2334 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  x.  ( B  -  1 ) )  /  2
)  =  ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) ) )
8916, 20, 44, 46divdird 9590 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  +  ( B  -  1 ) )  /  2
)  =  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )
9088, 89oveq12d 5892 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  -  1 )  x.  ( B  - 
1 ) )  / 
2 )  +  ( ( ( A  - 
1 )  +  ( B  -  1 ) )  /  2 ) )  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9142, 47, 903eqtrd 2332 . . . . . 6  |-  ( ph  ->  ( ( M  - 
1 )  /  2
)  =  ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) ) ) )
9291oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  +  ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) ) )  x.  ( ( N  -  1 )  / 
2 ) ) )
9372, 85zmulcld 10139 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  ZZ )
9456, 93zmulcld 10139 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  ZZ )
9594zcnd 10134 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  e.  CC )
9672, 85zaddcld 10137 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  ZZ )
9796zcnd 10134 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  e.  CC )
98 lgsquad2.3 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
9998nnzd 10132 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
100 lgsquad2.4 . . . . . . . . 9  |-  ( ph  ->  -.  2  ||  N
)
101 omoe 12881 . . . . . . . . 9  |-  ( ( ( N  e.  ZZ  /\ 
-.  2  ||  N
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( N  -  1 ) )
10299, 100, 64, 67, 101syl22anc 1183 . . . . . . . 8  |-  ( ph  ->  2  ||  ( N  -  1 ) )
103 peano2zm 10078 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
10499, 103syl 15 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
105 dvdsval2 12550 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
10656, 46, 104, 105syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( 2  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
107102, 106mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  ZZ )
108107zcnd 10134 . . . . . 6  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
10995, 97, 108adddird 8876 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  +  ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( 2  x.  (
( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) ) )  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11093zcnd 10134 . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  e.  CC )
11144, 110, 108mulassd 8874 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) ) )  x.  (
( N  -  1 )  /  2 ) )  =  ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
112111oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( ( 2  x.  ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) ) )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
11392, 109, 1123eqtrd 2332 . . . 4  |-  ( ph  ->  ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( 2  x.  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) ) )
114113oveq2d 5890 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
115 neg1cn 9829 . . . . . 6  |-  -u 1  e.  CC
116115a1i 10 . . . . 5  |-  ( ph  -> 
-u 1  e.  CC )
117 ax-1ne0 8822 . . . . . . 7  |-  1  =/=  0
1185, 117negne0i 9137 . . . . . 6  |-  -u 1  =/=  0
119118a1i 10 . . . . 5  |-  ( ph  -> 
-u 1  =/=  0
)
12093, 107zmulcld 10139 . . . . . 6  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
12156, 120zmulcld 10139 . . . . 5  |-  ( ph  ->  ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ )
12296, 107zmulcld 10139 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
123 expaddz 11162 . . . . 5  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  -  1 )  / 
2 ) )  x.  ( ( N  - 
1 )  /  2
) ) )  +  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
124116, 119, 121, 122, 123syl22anc 1183 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
125 expmulz 11164 . . . . . . 7  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )
126116, 119, 56, 120, 125syl22anc 1183 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ 2 ) ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )
127 sqneg 11180 . . . . . . . . . 10  |-  ( 1  e.  CC  ->  ( -u 1 ^ 2 )  =  ( 1 ^ 2 ) )
1285, 127ax-mp 8 . . . . . . . . 9  |-  ( -u
1 ^ 2 )  =  ( 1 ^ 2 )
129 sq1 11214 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
130128, 129eqtri 2316 . . . . . . . 8  |-  ( -u
1 ^ 2 )  =  1
131130oveq1i 5884 . . . . . . 7  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )
132 1exp 11147 . . . . . . . 8  |-  ( ( ( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) )  e.  ZZ  ->  (
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  1 )
133120, 132syl 15 . . . . . . 7  |-  ( ph  ->  ( 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) )  =  1 )
134131, 133syl5eq 2340 . . . . . 6  |-  ( ph  ->  ( ( -u 1 ^ 2 ) ^
( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  1 )
135126, 134eqtrd 2328 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( 2  x.  (
( ( ( A  -  1 )  / 
2 )  x.  (
( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  1 )
136135oveq1d 5889 . . . 4  |-  ( ph  ->  ( ( -u 1 ^ ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  x.  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
137124, 136eqtrd 2328 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( 2  x.  ( ( ( ( A  -  1 )  /  2 )  x.  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  +  ( ( ( ( A  -  1 )  / 
2 )  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( 1  x.  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
138116, 119, 122expclzd 11266 . . . . 5  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  e.  CC )
139138mulid2d 8869 . . . 4  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
14073, 86, 108adddird 8876 . . . . 5  |-  ( ph  ->  ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) )  =  ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
141140oveq2d 5890 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  +  ( ( B  - 
1 )  /  2
) )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
142139, 141eqtrd 2328 . . 3  |-  ( ph  ->  ( 1  x.  ( -u 1 ^ ( ( ( ( A  - 
1 )  /  2
)  +  ( ( B  -  1 )  /  2 ) )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  =  ( -u
1 ^ ( ( ( ( A  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
143114, 137, 1423eqtrd 2332 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
144 lgsquad2lem1.1 . . . 4  |-  ( ph  ->  ( ( A  / L N )  x.  ( N  / L A ) )  =  ( -u
1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
145 lgsquad2lem1.2 . . . 4  |-  ( ph  ->  ( ( B  / L N )  x.  ( N  / L B ) )  =  ( -u
1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
146144, 145oveq12d 5892 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
14772, 107zmulcld 10139 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
14885, 107zmulcld 10139 . . . 4  |-  ( ph  ->  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ )
149 expaddz 11162 . . . 4  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ  /\  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  e.  ZZ ) )  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) )  +  ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
150116, 119, 147, 148, 149syl22anc 1183 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( ( ( A  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) )  +  ( ( ( B  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) ) ) )  =  ( ( -u 1 ^ ( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) )  x.  ( -u 1 ^ ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
151146, 150eqtr4d 2331 . 2  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  (
-u 1 ^ (
( ( ( A  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) )  +  ( ( ( B  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
152 lgscl 20565 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  / L N )  e.  ZZ )
1533, 99, 152syl2anc 642 . . . . 5  |-  ( ph  ->  ( A  / L N )  e.  ZZ )
154153zcnd 10134 . . . 4  |-  ( ph  ->  ( A  / L N )  e.  CC )
155 lgscl 20565 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B  / L N )  e.  ZZ )
1569, 99, 155syl2anc 642 . . . . 5  |-  ( ph  ->  ( B  / L N )  e.  ZZ )
157156zcnd 10134 . . . 4  |-  ( ph  ->  ( B  / L N )  e.  CC )
158 lgscl 20565 . . . . . 6  |-  ( ( N  e.  ZZ  /\  A  e.  ZZ )  ->  ( N  / L A )  e.  ZZ )
15999, 3, 158syl2anc 642 . . . . 5  |-  ( ph  ->  ( N  / L A )  e.  ZZ )
160159zcnd 10134 . . . 4  |-  ( ph  ->  ( N  / L A )  e.  CC )
161 lgscl 20565 . . . . . 6  |-  ( ( N  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  / L B )  e.  ZZ )
16299, 9, 161syl2anc 642 . . . . 5  |-  ( ph  ->  ( N  / L B )  e.  ZZ )
163162zcnd 10134 . . . 4  |-  ( ph  ->  ( N  / L B )  e.  CC )
164154, 157, 160, 163mul4d 9040 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( B  / L N ) )  x.  ( ( N  / L A )  x.  ( N  / L B ) ) )  =  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N
)  x.  ( N  / L B ) ) ) )
1652nnne0d 9806 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
1668nnne0d 9806 . . . . . 6  |-  ( ph  ->  B  =/=  0 )
167 lgsdir 20585 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  / L N
)  =  ( ( A  / L N
)  x.  ( B  / L N ) ) )
1683, 9, 99, 165, 166, 167syl32anc 1190 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  / L N )  =  ( ( A  / L N )  x.  ( B  / L N ) ) )
1691oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( A  x.  B )  / L N )  =  ( M  / L N
) )
170168, 169eqtr3d 2330 . . . 4  |-  ( ph  ->  ( ( A  / L N )  x.  ( B  / L N ) )  =  ( M  / L N ) )
171 lgsdi 20587 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  / L ( A  x.  B ) )  =  ( ( N  / L A )  x.  ( N  / L B ) ) )
17299, 3, 9, 165, 166, 171syl32anc 1190 . . . . 5  |-  ( ph  ->  ( N  / L
( A  x.  B
) )  =  ( ( N  / L A )  x.  ( N  / L B ) ) )
1731oveq2d 5890 . . . . 5  |-  ( ph  ->  ( N  / L
( A  x.  B
) )  =  ( N  / L M
) )
174172, 173eqtr3d 2330 . . . 4  |-  ( ph  ->  ( ( N  / L A )  x.  ( N  / L B ) )  =  ( N  / L M ) )
175170, 174oveq12d 5892 . . 3  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( B  / L N ) )  x.  ( ( N  / L A )  x.  ( N  / L B ) ) )  =  ( ( M  / L N )  x.  ( N  / L M ) ) )
176164, 175eqtr3d 2330 . 2  |-  ( ph  ->  ( ( ( A  / L N )  x.  ( N  / L A ) )  x.  ( ( B  / L N )  x.  ( N  / L B ) ) )  =  ( ( M  / L N )  x.  ( N  / L M ) ) )
177143, 151, 1763eqtr2rd 2335 1  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   ZZcz 10040   ^cexp 11120    || cdivides 12547    gcd cgcd 12701   Primecprime 12774    / Lclgs 20549
This theorem is referenced by:  lgsquad2lem2  20614
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-phi 12850  df-pc 12906  df-lgs 20550
  Copyright terms: Public domain W3C validator