MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2lem2 Unicode version

Theorem lgsquad2lem2 20598
Description: Lemma for lgsquad2 20599. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1  |-  ( ph  ->  M  e.  NN )
lgsquad2.2  |-  ( ph  ->  -.  2  ||  M
)
lgsquad2.3  |-  ( ph  ->  N  e.  NN )
lgsquad2.4  |-  ( ph  ->  -.  2  ||  N
)
lgsquad2.5  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
lgsquad2lem2.f  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
lgsquad2lem2.s  |-  ( ps  <->  A. x  e.  ( 1 ... k ) ( ( x  gcd  (
2  x.  N ) )  =  1  -> 
( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
Assertion
Ref Expression
lgsquad2lem2  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Distinct variable groups:    m, M    x, m, N    ph, m, x
Allowed substitution hints:    ph( k)    ps( x, k, m)    M( x, k)    N( k)

Proof of Theorem lgsquad2lem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . . . 4  |-  ( ph  ->  M  e.  NN )
2 2nn 9877 . . . . 5  |-  2  e.  NN
32a1i 10 . . . 4  |-  ( ph  ->  2  e.  NN )
4 lgsquad2.3 . . . 4  |-  ( ph  ->  N  e.  NN )
51nnzd 10116 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
6 2z 10054 . . . . . 6  |-  2  e.  ZZ
7 gcdcom 12699 . . . . . 6  |-  ( ( M  e.  ZZ  /\  2  e.  ZZ )  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
85, 6, 7sylancl 643 . . . . 5  |-  ( ph  ->  ( M  gcd  2
)  =  ( 2  gcd  M ) )
9 lgsquad2.2 . . . . . 6  |-  ( ph  ->  -.  2  ||  M
)
10 2prm 12774 . . . . . . 7  |-  2  e.  Prime
11 coprm 12779 . . . . . . 7  |-  ( ( 2  e.  Prime  /\  M  e.  ZZ )  ->  ( -.  2  ||  M  <->  ( 2  gcd  M )  =  1 ) )
1210, 5, 11sylancr 644 . . . . . 6  |-  ( ph  ->  ( -.  2  ||  M 
<->  ( 2  gcd  M
)  =  1 ) )
139, 12mpbid 201 . . . . 5  |-  ( ph  ->  ( 2  gcd  M
)  =  1 )
148, 13eqtrd 2315 . . . 4  |-  ( ph  ->  ( M  gcd  2
)  =  1 )
15 rpmulgcd 12734 . . . 4  |-  ( ( ( M  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  2
)  =  1 )  ->  ( M  gcd  ( 2  x.  N
) )  =  ( M  gcd  N ) )
161, 3, 4, 14, 15syl31anc 1185 . . 3  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  ( M  gcd  N ) )
17 lgsquad2.5 . . 3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
1816, 17eqtrd 2315 . 2  |-  ( ph  ->  ( M  gcd  (
2  x.  N ) )  =  1 )
19 oveq1 5865 . . . . . . . 8  |-  ( m  =  1  ->  (
m  / L N
)  =  ( 1  / L N ) )
20 oveq2 5866 . . . . . . . 8  |-  ( m  =  1  ->  ( N  / L m )  =  ( N  / L 1 ) )
2119, 20oveq12d 5876 . . . . . . 7  |-  ( m  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( ( 1  / L N
)  x.  ( N  / L 1 ) ) )
22 oveq1 5865 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
23 1m1e0 9814 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
2422, 23syl6eq 2331 . . . . . . . . . . 11  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
2524oveq1d 5873 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  ( 0  / 
2 ) )
26 2cn 9816 . . . . . . . . . . 11  |-  2  e.  CC
27 2ne0 9829 . . . . . . . . . . 11  |-  2  =/=  0
2826, 27div0i 9494 . . . . . . . . . 10  |-  ( 0  /  2 )  =  0
2925, 28syl6eq 2331 . . . . . . . . 9  |-  ( m  =  1  ->  (
( m  -  1 )  /  2 )  =  0 )
3029oveq1d 5873 . . . . . . . 8  |-  ( m  =  1  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( 0  x.  ( ( N  - 
1 )  /  2
) ) )
3130oveq2d 5874 . . . . . . 7  |-  ( m  =  1  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) )
3221, 31eqeq12d 2297 . . . . . 6  |-  ( m  =  1  ->  (
( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  <-> 
( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( -u
1 ^ ( 0  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
3332imbi2d 307 . . . . 5  |-  ( m  =  1  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
3433imbi2d 307 . . . 4  |-  ( m  =  1  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
35 oveq1 5865 . . . . . . 7  |-  ( m  =  x  ->  (
m  gcd  ( 2  x.  N ) )  =  ( x  gcd  ( 2  x.  N
) ) )
3635eqeq1d 2291 . . . . . 6  |-  ( m  =  x  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
x  gcd  ( 2  x.  N ) )  =  1 ) )
37 oveq1 5865 . . . . . . . 8  |-  ( m  =  x  ->  (
m  / L N
)  =  ( x  / L N ) )
38 oveq2 5866 . . . . . . . 8  |-  ( m  =  x  ->  ( N  / L m )  =  ( N  / L x ) )
3937, 38oveq12d 5876 . . . . . . 7  |-  ( m  =  x  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( ( x  / L N
)  x.  ( N  / L x ) ) )
40 oveq1 5865 . . . . . . . . . 10  |-  ( m  =  x  ->  (
m  -  1 )  =  ( x  - 
1 ) )
4140oveq1d 5873 . . . . . . . . 9  |-  ( m  =  x  ->  (
( m  -  1 )  /  2 )  =  ( ( x  -  1 )  / 
2 ) )
4241oveq1d 5873 . . . . . . . 8  |-  ( m  =  x  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
4342oveq2d 5874 . . . . . . 7  |-  ( m  =  x  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
4439, 43eqeq12d 2297 . . . . . 6  |-  ( m  =  x  ->  (
( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  <-> 
( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
4536, 44imbi12d 311 . . . . 5  |-  ( m  =  x  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
4645imbi2d 307 . . . 4  |-  ( m  =  x  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
47 oveq1 5865 . . . . . . 7  |-  ( m  =  y  ->  (
m  gcd  ( 2  x.  N ) )  =  ( y  gcd  ( 2  x.  N
) ) )
4847eqeq1d 2291 . . . . . 6  |-  ( m  =  y  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
y  gcd  ( 2  x.  N ) )  =  1 ) )
49 oveq1 5865 . . . . . . . 8  |-  ( m  =  y  ->  (
m  / L N
)  =  ( y  / L N ) )
50 oveq2 5866 . . . . . . . 8  |-  ( m  =  y  ->  ( N  / L m )  =  ( N  / L y ) )
5149, 50oveq12d 5876 . . . . . . 7  |-  ( m  =  y  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( ( y  / L N
)  x.  ( N  / L y ) ) )
52 oveq1 5865 . . . . . . . . . 10  |-  ( m  =  y  ->  (
m  -  1 )  =  ( y  - 
1 ) )
5352oveq1d 5873 . . . . . . . . 9  |-  ( m  =  y  ->  (
( m  -  1 )  /  2 )  =  ( ( y  -  1 )  / 
2 ) )
5453oveq1d 5873 . . . . . . . 8  |-  ( m  =  y  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
5554oveq2d 5874 . . . . . . 7  |-  ( m  =  y  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
5651, 55eqeq12d 2297 . . . . . 6  |-  ( m  =  y  ->  (
( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  <-> 
( ( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
5748, 56imbi12d 311 . . . . 5  |-  ( m  =  y  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  / L N )  x.  ( N  / L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
5857imbi2d 307 . . . 4  |-  ( m  =  y  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( y  gcd  ( 2  x.  N
) )  =  1  ->  ( ( y  / L N )  x.  ( N  / L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
59 oveq1 5865 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N
) ) )
6059eqeq1d 2291 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 ) )
61 oveq1 5865 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
m  / L N
)  =  ( ( x  x.  y )  / L N ) )
62 oveq2 5866 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  ( N  / L m )  =  ( N  / L ( x  x.  y ) ) )
6361, 62oveq12d 5876 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( ( ( x  x.  y
)  / L N
)  x.  ( N  / L ( x  x.  y ) ) ) )
64 oveq1 5865 . . . . . . . . . 10  |-  ( m  =  ( x  x.  y )  ->  (
m  -  1 )  =  ( ( x  x.  y )  - 
1 ) )
6564oveq1d 5873 . . . . . . . . 9  |-  ( m  =  ( x  x.  y )  ->  (
( m  -  1 )  /  2 )  =  ( ( ( x  x.  y )  -  1 )  / 
2 ) )
6665oveq1d 5873 . . . . . . . 8  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
6766oveq2d 5874 . . . . . . 7  |-  ( m  =  ( x  x.  y )  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
6863, 67eqeq12d 2297 . . . . . 6  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  <-> 
( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
6960, 68imbi12d 311 . . . . 5  |-  ( m  =  ( x  x.  y )  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
7069imbi2d 307 . . . 4  |-  ( m  =  ( x  x.  y )  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( ( x  x.  y )  gcd  ( 2  x.  N
) )  =  1  ->  ( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) ) )
71 oveq1 5865 . . . . . . 7  |-  ( m  =  M  ->  (
m  gcd  ( 2  x.  N ) )  =  ( M  gcd  ( 2  x.  N
) ) )
7271eqeq1d 2291 . . . . . 6  |-  ( m  =  M  ->  (
( m  gcd  (
2  x.  N ) )  =  1  <->  ( M  gcd  ( 2  x.  N ) )  =  1 ) )
73 oveq1 5865 . . . . . . . 8  |-  ( m  =  M  ->  (
m  / L N
)  =  ( M  / L N ) )
74 oveq2 5866 . . . . . . . 8  |-  ( m  =  M  ->  ( N  / L m )  =  ( N  / L M ) )
7573, 74oveq12d 5876 . . . . . . 7  |-  ( m  =  M  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( ( M  / L N
)  x.  ( N  / L M ) ) )
76 oveq1 5865 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  -  1 )  =  ( M  - 
1 ) )
7776oveq1d 5873 . . . . . . . . 9  |-  ( m  =  M  ->  (
( m  -  1 )  /  2 )  =  ( ( M  -  1 )  / 
2 ) )
7877oveq1d 5873 . . . . . . . 8  |-  ( m  =  M  ->  (
( ( m  - 
1 )  /  2
)  x.  ( ( N  -  1 )  /  2 ) )  =  ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) )
7978oveq2d 5874 . . . . . . 7  |-  ( m  =  M  ->  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
8075, 79eqeq12d 2297 . . . . . 6  |-  ( m  =  M  ->  (
( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) )  <-> 
( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
8172, 80imbi12d 311 . . . . 5  |-  ( m  =  M  ->  (
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  <-> 
( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) )
8281imbi2d 307 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( m  gcd  ( 2  x.  N ) )  =  1  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  <->  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) ) )
83 1t1e1 9870 . . . . . . 7  |-  ( 1  x.  1 )  =  1
84 neg1cn 9813 . . . . . . . 8  |-  -u 1  e.  CC
85 exp0 11108 . . . . . . . 8  |-  ( -u
1  e.  CC  ->  (
-u 1 ^ 0 )  =  1 )
8684, 85ax-mp 8 . . . . . . 7  |-  ( -u
1 ^ 0 )  =  1
8783, 86eqtr4i 2306 . . . . . 6  |-  ( 1  x.  1 )  =  ( -u 1 ^ 0 )
88 sq1 11198 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
8988oveq1i 5868 . . . . . . . 8  |-  ( ( 1 ^ 2 )  / L N )  =  ( 1  / L N )
90 1nn 9757 . . . . . . . . . 10  |-  1  e.  NN
9190a1i 10 . . . . . . . . 9  |-  ( ph  ->  1  e.  NN )
924nnzd 10116 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
93 1gcd 12716 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
9492, 93syl 15 . . . . . . . . 9  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
95 lgssq 20574 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  N  e.  ZZ  /\  (
1  gcd  N )  =  1 )  -> 
( ( 1 ^ 2 )  / L N )  =  1 )
9691, 92, 94, 95syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( ( 1 ^ 2 )  / L N )  =  1 )
9789, 96syl5eqr 2329 . . . . . . 7  |-  ( ph  ->  ( 1  / L N )  =  1 )
9888oveq2i 5869 . . . . . . . 8  |-  ( N  / L ( 1 ^ 2 ) )  =  ( N  / L 1 )
99 gcd1 12711 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
10092, 99syl 15 . . . . . . . . 9  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
101 lgssq2 20575 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  e.  NN  /\  ( N  gcd  1 )  =  1 )  ->  ( N  / L ( 1 ^ 2 ) )  =  1 )
10292, 91, 100, 101syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( N  / L
( 1 ^ 2 ) )  =  1 )
10398, 102syl5eqr 2329 . . . . . . 7  |-  ( ph  ->  ( N  / L
1 )  =  1 )
10497, 103oveq12d 5876 . . . . . 6  |-  ( ph  ->  ( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( 1  x.  1 ) )
105 nnm1nn0 10005 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1064, 105syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
107106nn0cnd 10020 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  CC )
108107halfcld 9956 . . . . . . . 8  |-  ( ph  ->  ( ( N  - 
1 )  /  2
)  e.  CC )
109108mul02d 9010 . . . . . . 7  |-  ( ph  ->  ( 0  x.  (
( N  -  1 )  /  2 ) )  =  0 )
110109oveq2d 5874 . . . . . 6  |-  ( ph  ->  ( -u 1 ^ ( 0  x.  (
( N  -  1 )  /  2 ) ) )  =  (
-u 1 ^ 0 ) )
11187, 104, 1103eqtr4a 2341 . . . . 5  |-  ( ph  ->  ( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( -u
1 ^ ( 0  x.  ( ( N  -  1 )  / 
2 ) ) ) )
112111a1d 22 . . . 4  |-  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( 1  / L N )  x.  ( N  / L 1 ) )  =  ( -u 1 ^ ( 0  x.  ( ( N  - 
1 )  /  2
) ) ) ) )
113 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  Prime )
114 prmz 12762 . . . . . . . . . . . 12  |-  ( m  e.  Prime  ->  m  e.  ZZ )
115114ad2antrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ZZ )
1166a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  ZZ )
1174adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  NN )
118117nnzd 10116 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  N  e.  ZZ )
119 zmulcl 10066 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  x.  N
)  e.  ZZ )
1206, 118, 119sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
2  x.  N )  e.  ZZ )
121 simprr 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  1 )
122 dvdsmul1 12550 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  2  ||  ( 2  x.  N ) )
1236, 118, 122sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  ||  ( 2  x.  N
) )
124 rpdvds 12803 . . . . . . . . . . 11  |-  ( ( ( m  e.  ZZ  /\  2  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( m  gcd  ( 2  x.  N ) )  =  1  /\  2  ||  ( 2  x.  N
) ) )  -> 
( m  gcd  2
)  =  1 )
125115, 116, 120, 121, 123, 124syl32anc 1190 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  2 )  =  1 )
126 prmrp 12780 . . . . . . . . . . 11  |-  ( ( m  e.  Prime  /\  2  e.  Prime )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
127113, 10, 126sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  gcd  2
)  =  1  <->  m  =/=  2 ) )
128125, 127mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  =/=  2 )
129 eldifsn 3749 . . . . . . . . 9  |-  ( m  e.  ( Prime  \  {
2 } )  <->  ( m  e.  Prime  /\  m  =/=  2 ) )
130113, 128, 129sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  ( Prime  \  { 2 } ) )
131 prmnn 12761 . . . . . . . . . . 11  |-  ( m  e.  Prime  ->  m  e.  NN )
132131ad2antrl 708 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  m  e.  NN )
1332a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  2  e.  NN )
134 rpmulgcd 12734 . . . . . . . . . 10  |-  ( ( ( m  e.  NN  /\  2  e.  NN  /\  N  e.  NN )  /\  ( m  gcd  2
)  =  1 )  ->  ( m  gcd  ( 2  x.  N
) )  =  ( m  gcd  N ) )
135132, 133, 117, 125, 134syl31anc 1185 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  ( 2  x.  N ) )  =  ( m  gcd  N ) )
136135, 121eqtr3d 2317 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  gcd  N )  =  1 )
137130, 136jca 518 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
m  e.  ( Prime  \  { 2 } )  /\  ( m  gcd  N )  =  1 ) )
138 lgsquad2lem2.f . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( Prime  \  { 2 } )  /\  (
m  gcd  N )  =  1 ) )  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
139137, 138syldan 456 . . . . . 6  |-  ( (
ph  /\  ( m  e.  Prime  /\  ( m  gcd  ( 2  x.  N
) )  =  1 ) )  ->  (
( m  / L N )  x.  ( N  / L m ) )  =  ( -u
1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
140139exp32 588 . . . . 5  |-  ( ph  ->  ( m  e.  Prime  -> 
( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
141140com12 27 . . . 4  |-  ( m  e.  Prime  ->  ( ph  ->  ( ( m  gcd  ( 2  x.  N
) )  =  1  ->  ( ( m  / L N )  x.  ( N  / L m ) )  =  ( -u 1 ^ ( ( ( m  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) ) ) )
142 jcab 833 . . . . 5  |-  ( (
ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  <->  ( ( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  / L N
)  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
143 simplrl 736 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  (
ZZ>= `  2 ) )
144 eluz2b2 10290 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  2
)  <->  ( x  e.  NN  /\  1  < 
x ) )
145144simplbi 446 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  NN )
146143, 145syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  x  e.  NN )
147 simplrr 737 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  (
ZZ>= `  2 ) )
148 eluz2b2 10290 . . . . . . . . . . . . 13  |-  ( y  e.  ( ZZ>= `  2
)  <->  ( y  e.  NN  /\  1  < 
y ) )
149148simplbi 446 . . . . . . . . . . . 12  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  NN )
150147, 149syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  y  e.  NN )
151146, 150nnmulcld 9793 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  e.  NN )
152 nprmdvds1 12790 . . . . . . . . . . . . 13  |-  ( 2  e.  Prime  ->  -.  2  ||  1 )
15310, 152ax-mp 8 . . . . . . . . . . . 12  |-  -.  2  ||  1
15492ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  e.  ZZ )
1556, 154, 122sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  ||  ( 2  x.  N ) )
1566a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
2  e.  ZZ )
157 eluzelz 10238 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  2
)  ->  x  e.  ZZ )
158 eluzelz 10238 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ZZ>= `  2
)  ->  y  e.  ZZ )
159157, 158anim12i 549 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( x  e.  ZZ  /\  y  e.  ZZ ) )
160159ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  e.  ZZ  /\  y  e.  ZZ ) )
161 zmulcl 10066 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
162160, 161syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  x.  y
)  e.  ZZ )
1636, 154, 119sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  x.  N
)  e.  ZZ )
164 dvdsgcd 12722 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( ( 2 
||  ( x  x.  y )  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
165156, 162, 163, 164syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  ||  ( x  x.  y
)  /\  2  ||  ( 2  x.  N
) )  ->  2  ||  ( ( x  x.  y )  gcd  (
2  x.  N ) ) ) )
166155, 165mpan2d 655 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) ) ) )
167 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1 )
168167breq2d 4035 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  <->  2  ||  1 ) )
169166, 168sylibd 205 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( 2  ||  (
x  x.  y )  ->  2  ||  1
) )
170153, 169mtoi 169 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  -.  2  ||  ( x  x.  y ) )
171170adantrr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  ( x  x.  y
) )
1724ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  N  e.  NN )
173 lgsquad2.4 . . . . . . . . . . 11  |-  ( ph  ->  -.  2  ||  N
)
174173ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  -.  2  ||  N )
175 dvdsmul2 12551 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( 2  x.  N ) )
1766, 154, 175sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  N  ||  ( 2  x.  N ) )
177 rpdvds 12803 . . . . . . . . . . . 12  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  N  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  /\  ( ( ( x  x.  y )  gcd  ( 2  x.  N ) )  =  1  /\  N  ||  ( 2  x.  N
) ) )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
178162, 154, 163, 167, 176, 177syl32anc 1190 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( x  x.  y )  gcd  N
)  =  1 )
179178adantrr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  x.  y )  gcd 
N )  =  1 )
180 eqidd 2284 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  x.  y )  =  ( x  x.  y ) )
181160simpld 445 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  e.  ZZ )
182 gcdcom 12699 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( x  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  x )
)
183181, 163, 182syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  x ) )
184 gcdcom 12699 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  N
)  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  ->  ( ( 2  x.  N )  gcd  ( x  x.  y
) )  =  ( ( x  x.  y
)  gcd  ( 2  x.  N ) ) )
185163, 162, 184syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  ( ( x  x.  y )  gcd  ( 2  x.  N ) ) )
186185, 167eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  (
x  x.  y ) )  =  1 )
187 dvdsmul1 12550 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  ||  ( x  x.  y ) )
188160, 187syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  ->  x  ||  ( x  x.  y ) )
189 rpdvds 12803 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  x  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  x  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
190163, 181, 162, 186, 188, 189syl32anc 1190 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  x
)  =  1 )
191183, 190eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( x  gcd  (
2  x.  N ) )  =  1 )
192191adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( x  gcd  ( 2  x.  N
) )  =  1 )
193 simprrl 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
194192, 193mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
195160simprd 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  e.  ZZ )
196 gcdcom 12699 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ZZ  /\  ( 2  x.  N
)  e.  ZZ )  ->  ( y  gcd  ( 2  x.  N
) )  =  ( ( 2  x.  N
)  gcd  y )
)
197195, 163, 196syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  ( ( 2  x.  N )  gcd  y ) )
198 dvdsmul2 12551 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  ||  ( x  x.  y ) )
199160, 198syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
y  ||  ( x  x.  y ) )
200 rpdvds 12803 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  N )  e.  ZZ  /\  y  e.  ZZ  /\  ( x  x.  y
)  e.  ZZ )  /\  ( ( ( 2  x.  N )  gcd  ( x  x.  y ) )  =  1  /\  y  ||  ( x  x.  y
) ) )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
201163, 195, 162, 186, 199, 200syl32anc 1190 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( ( 2  x.  N )  gcd  y
)  =  1 )
202197, 201eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1 )  -> 
( y  gcd  (
2  x.  N ) )  =  1 )
203202adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( y  gcd  ( 2  x.  N
) )  =  1 )
204 simprrr 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  / L N
)  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )
205203, 204mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( y  / L N )  x.  ( N  / L y ) )  =  ( -u 1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
206151, 171, 172, 174, 179, 146, 150, 180, 194, 205lgsquad2lem1 20597 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
) )  /\  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  /\  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )  ->  ( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u 1 ^ ( ( ( ( x  x.  y
)  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )
207206exp32 588 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  ( (
x  / L N
)  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )
208207com23 72 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  2 )  /\  y  e.  ( ZZ>=
`  2 ) ) )  ->  ( (
( ( x  gcd  ( 2  x.  N
) )  =  1  ->  ( ( x  / L N )  x.  ( N  / L x ) )  =  ( -u 1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  - 
1 )  /  2
) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  / L N
)  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )
209208expcom 424 . . . . . 6  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ph  ->  ( ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  ->  (
( ( x  x.  y )  gcd  (
2  x.  N ) )  =  1  -> 
( ( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
210209a2d 23 . . . . 5  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( ( ph  ->  ( ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )  /\  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  (
( y  / L N )  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
211142, 210syl5bir 209 . . . 4  |-  ( ( x  e.  ( ZZ>= ` 
2 )  /\  y  e.  ( ZZ>= `  2 )
)  ->  ( (
( ph  ->  ( ( x  gcd  ( 2  x.  N ) )  =  1  ->  (
( x  / L N )  x.  ( N  / L x ) )  =  ( -u
1 ^ ( ( ( x  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) )  /\  ( ph  ->  ( ( y  gcd  ( 2  x.  N ) )  =  1  ->  ( (
y  / L N
)  x.  ( N  / L y ) )  =  ( -u
1 ^ ( ( ( y  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) )  -> 
( ph  ->  ( ( ( x  x.  y
)  gcd  ( 2  x.  N ) )  =  1  ->  (
( ( x  x.  y )  / L N )  x.  ( N  / L ( x  x.  y ) ) )  =  ( -u
1 ^ ( ( ( ( x  x.  y )  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) ) ) ) )
21234, 46, 58, 70, 82, 112, 141, 211prmind 12770 . . 3  |-  ( M  e.  NN  ->  ( ph  ->  ( ( M  gcd  ( 2  x.  N ) )  =  1  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) ) )
2131, 212mpcom 32 . 2  |-  ( ph  ->  ( ( M  gcd  ( 2  x.  N
) )  =  1  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u 1 ^ ( ( ( M  -  1 )  / 
2 )  x.  (
( N  -  1 )  /  2 ) ) ) ) )
21418, 213mpd 14 1  |-  ( ph  ->  ( ( M  / L N )  x.  ( N  / L M ) )  =  ( -u
1 ^ ( ( ( M  -  1 )  /  2 )  x.  ( ( N  -  1 )  / 
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    \ cdif 3149   {csn 3640   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104    || cdivides 12531    gcd cgcd 12685   Primecprime 12758    / Lclgs 20533
This theorem is referenced by:  lgsquad2  20599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-lgs 20534
  Copyright terms: Public domain W3C validator