MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem3 Unicode version

Theorem lgsquadlem3 20595
Description: Lemma for lgsquad 20596. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgsquad.4  |-  M  =  ( ( P  - 
1 )  /  2
)
lgsquad.5  |-  N  =  ( ( Q  - 
1 )  /  2
)
lgsquad.6  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
Assertion
Ref Expression
lgsquadlem3  |-  ( ph  ->  ( ( P  / L Q )  x.  ( Q  / L P ) )  =  ( -u
1 ^ ( M  x.  N ) ) )
Distinct variable groups:    x, y, P    ph, x, y    y, M    x, N, y    x, Q, y    x, S    x, M    y, S

Proof of Theorem lgsquadlem3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
2 lgseisen.1 . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 lgseisen.3 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
43necomd 2529 . . . . 5  |-  ( ph  ->  Q  =/=  P )
5 lgsquad.5 . . . . 5  |-  N  =  ( ( Q  - 
1 )  /  2
)
6 lgsquad.4 . . . . 5  |-  M  =  ( ( P  - 
1 )  /  2
)
7 eleq1 2343 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  e.  ( 1 ... M )  <->  z  e.  ( 1 ... M
) ) )
8 eleq1 2343 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  e.  ( 1 ... N )  <->  w  e.  ( 1 ... N
) ) )
97, 8bi2anan9 843 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( z  e.  ( 1 ... M
)  /\  w  e.  ( 1 ... N
) ) ) )
10 ancom 437 . . . . . . . . 9  |-  ( ( z  e.  ( 1 ... M )  /\  w  e.  ( 1 ... N ) )  <-> 
( w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) ) )
119, 10syl6bb 252 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( w  e.  ( 1 ... N
)  /\  z  e.  ( 1 ... M
) ) ) )
12 oveq1 5865 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  x.  Q )  =  ( z  x.  Q ) )
13 oveq1 5865 . . . . . . . . 9  |-  ( y  =  w  ->  (
y  x.  P )  =  ( w  x.  P ) )
1412, 13breqan12d 4038 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  x.  Q )  <  (
y  x.  P )  <-> 
( z  x.  Q
)  <  ( w  x.  P ) ) )
1511, 14anbi12d 691 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1615ancoms 439 . . . . . 6  |-  ( ( y  =  w  /\  x  =  z )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1716cbvopabv 4088 . . . . 5  |-  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  =  { <. w ,  z
>.  |  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) }
181, 2, 4, 5, 6, 17lgsquadlem2 20594 . . . 4  |-  ( ph  ->  ( P  / L Q )  =  (
-u 1 ^ ( # `
 { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
19 relopab 4812 . . . . . . . 8  |-  Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }
20 fzfid 11035 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
21 fzfid 11035 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
22 xpfi 7128 . . . . . . . . . 10  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin )
2320, 21, 22syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin )
24 opabssxp 4762 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
25 ssfi 7083 . . . . . . . . 9  |-  ( ( ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin  /\  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } 
C_  ( ( 1 ... M )  X.  ( 1 ... N
) ) )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin )
2623, 24, 25sylancl 643 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin )
27 cnven 6936 . . . . . . . 8  |-  ( ( Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  /\  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
2819, 26, 27sylancr 644 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
29 cnvopab 5083 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  =  { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }
3028, 29syl6breq 4062 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )
31 hasheni 11347 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } 
~~  { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  ->  (
# `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  =  ( # `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
3230, 31syl 15 . . . . 5  |-  ( ph  ->  ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  =  ( # `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
3332oveq2d 5874 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )  =  (
-u 1 ^ ( # `
 { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
3418, 33eqtr4d 2318 . . 3  |-  ( ph  ->  ( P  / L Q )  =  (
-u 1 ^ ( # `
 { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) ) )
35 lgsquad.6 . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
362, 1, 3, 6, 5, 35lgsquadlem2 20594 . . 3  |-  ( ph  ->  ( Q  / L P )  =  (
-u 1 ^ ( # `
 S ) ) )
3734, 36oveq12d 5876 . 2  |-  ( ph  ->  ( ( P  / L Q )  x.  ( Q  / L P ) )  =  ( (
-u 1 ^ ( # `
 { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) )  x.  ( -u
1 ^ ( # `  S ) ) ) )
38 neg1cn 9813 . . . 4  |-  -u 1  e.  CC
3938a1i 10 . . 3  |-  ( ph  -> 
-u 1  e.  CC )
40 opabssxp 4762 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) }  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
4135, 40eqsstri 3208 . . . . 5  |-  S  C_  ( ( 1 ... M )  X.  (
1 ... N ) )
42 ssfi 7083 . . . . 5  |-  ( ( ( ( 1 ... M )  X.  (
1 ... N ) )  e.  Fin  /\  S  C_  ( ( 1 ... M )  X.  (
1 ... N ) ) )  ->  S  e.  Fin )
4323, 41, 42sylancl 643 . . . 4  |-  ( ph  ->  S  e.  Fin )
44 hashcl 11350 . . . 4  |-  ( S  e.  Fin  ->  ( # `
 S )  e. 
NN0 )
4543, 44syl 15 . . 3  |-  ( ph  ->  ( # `  S
)  e.  NN0 )
46 hashcl 11350 . . . 4  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin  ->  ( # `
 { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  e.  NN0 )
4726, 46syl 15 . . 3  |-  ( ph  ->  ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  e.  NN0 )
4839, 45, 47expaddd 11247 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )  =  ( ( -u
1 ^ ( # `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } ) )  x.  ( -u 1 ^ ( # `  S
) ) ) )
49 eldifi 3298 . . . . . . . . . . . . . . . . . 18  |-  ( Q  e.  ( Prime  \  {
2 } )  ->  Q  e.  Prime )
501, 49syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Q  e.  Prime )
5150adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  Prime )
52 prmnn 12761 . . . . . . . . . . . . . . . 16  |-  ( Q  e.  Prime  ->  Q  e.  NN )
5351, 52syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  NN )
54 oddprm 12868 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Q  e.  ( Prime  \  {
2 } )  -> 
( ( Q  - 
1 )  /  2
)  e.  NN )
551, 54syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( Q  - 
1 )  /  2
)  e.  NN )
565, 55syl5eqel 2367 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  e.  NN )
5756adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  NN )
5857nnzd 10116 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  ZZ )
59 prmz 12762 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
6051, 59syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ZZ )
61 peano2zm 10062 . . . . . . . . . . . . . . . . . . 19  |-  ( Q  e.  ZZ  ->  ( Q  -  1 )  e.  ZZ )
6260, 61syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ZZ )
6357nnred 9761 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  RR )
6462zred 10117 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR )
65 prmuz2 12776 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Q  e.  Prime  ->  Q  e.  ( ZZ>= `  2 )
)
6651, 65syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ( ZZ>= ` 
2 ) )
67 uz2m1nn 10292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Q  e.  ( ZZ>= `  2
)  ->  ( Q  -  1 )  e.  NN )
6866, 67syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  NN )
6968nnrpd 10389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR+ )
70 rphalflt 10380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Q  -  1 )  e.  RR+  ->  ( ( Q  -  1 )  /  2 )  < 
( Q  -  1 ) )
7169, 70syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  - 
1 )  /  2
)  <  ( Q  -  1 ) )
725, 71syl5eqbr 4056 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <  ( Q  - 
1 ) )
7363, 64, 72ltled 8967 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <_  ( Q  - 
1 ) )
74 eluz2 10236 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  ( Q  -  1 )  e.  ZZ  /\  N  <_ 
( Q  -  1 ) ) )
7558, 62, 73, 74syl3anbrc 1136 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ( ZZ>= `  N ) )
76 fzss2 10831 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... ( Q  -  1 ) ) )
7775, 76syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( 1 ... N
)  C_  ( 1 ... ( Q  - 
1 ) ) )
78 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... N ) )
7977, 78sseldd 3181 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... ( Q  - 
1 ) ) )
80 fzm1ndvds 12580 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  NN  /\  y  e.  ( 1 ... ( Q  - 
1 ) ) )  ->  -.  Q  ||  y
)
8153, 79, 80syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  y )
824adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  =/=  P )
83 eldifi 3298 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
842, 83syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  P  e.  Prime )
8584adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  Prime )
86 prmrp 12780 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  e.  Prime  /\  P  e.  Prime )  ->  (
( Q  gcd  P
)  =  1  <->  Q  =/=  P ) )
8751, 85, 86syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  gcd  P )  =  1  <->  Q  =/=  P ) )
8882, 87mpbird 223 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  gcd  P
)  =  1 )
89 prmz 12762 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9085, 89syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  ZZ )
91 elfzelz 10798 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 1 ... N )  ->  y  e.  ZZ )
9291ad2antll 709 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ZZ )
93 coprmdvds 12781 . . . . . . . . . . . . . . . 16  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  y  e.  ZZ )  ->  (
( Q  ||  ( P  x.  y )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  y
) )
9460, 90, 92, 93syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  ||  ( P  x.  y
)  /\  ( Q  gcd  P )  =  1 )  ->  Q  ||  y
) )
9588, 94mpan2d 655 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  ->  Q  ||  y ) )
9681, 95mtod 168 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( P  x.  y ) )
97 prmnn 12761 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
9885, 97syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  NN )
9998nncnd 9762 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  CC )
100 elfznn 10819 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 1 ... N )  ->  y  e.  NN )
101100ad2antll 709 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  NN )
102101nncnd 9762 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  CC )
10399, 102mulcomd 8856 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( P  x.  y
)  =  ( y  x.  P ) )
104103breq2d 4035 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  <->  Q 
||  ( y  x.  P ) ) )
10596, 104mtbid 291 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( y  x.  P ) )
106 elfzelz 10798 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... M )  ->  x  e.  ZZ )
107106ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  ZZ )
108 dvdsmul2 12551 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( x  x.  Q ) )
109107, 60, 108syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  ||  ( x  x.  Q ) )
110 breq2 4027 . . . . . . . . . . . . . 14  |-  ( ( x  x.  Q )  =  ( y  x.  P )  ->  ( Q  ||  ( x  x.  Q )  <->  Q  ||  (
y  x.  P ) ) )
111109, 110syl5ibcom 211 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =  ( y  x.  P )  ->  Q  ||  (
y  x.  P ) ) )
112111necon3bd 2483 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( -.  Q  ||  ( y  x.  P
)  ->  ( x  x.  Q )  =/=  (
y  x.  P ) ) )
113105, 112mpd 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  =/=  ( y  x.  P ) )
114 elfznn 10819 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 ... M )  ->  x  e.  NN )
115114ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  NN )
116115, 53nnmulcld 9793 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  NN )
117116nnred 9761 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  RR )
118101, 98nnmulcld 9793 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  NN )
119118nnred 9761 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  RR )
120117, 119lttri2d 8958 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =/=  (
y  x.  P )  <-> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
121113, 120mpbid 201 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) )
122121ex 423 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
123122pm4.71rd 616 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) )  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... N ) ) ) ) )
124 ancom 437 . . . . . . . 8  |-  ( ( ( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) )  /\  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) ) )  <->  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) )
125123, 124syl6rbb 253 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) ) )
126125opabbidv 4082 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) } )
127 unopab 4095 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
12835uneq2i 3326 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
129 andi 837 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
130129opabbii 4083 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
131127, 128, 1303eqtr4i 2313 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }
132 df-xp 4695 . . . . . 6  |-  ( ( 1 ... M )  X.  ( 1 ... N ) )  =  { <. x ,  y
>.  |  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) }
133126, 131, 1323eqtr4g 2340 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  S )  =  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )
134133fveq2d 5529 . . . 4  |-  ( ph  ->  ( # `  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  u.  S
) )  =  (
# `  ( (
1 ... M )  X.  ( 1 ... N
) ) ) )
135 inopab 4816 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
13635ineq2i 3367 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
137 anandi 801 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
138137opabbii 4083 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
139135, 136, 1383eqtr4i 2313 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }
140 ltnsym2 8920 . . . . . . . . . . . 12  |-  ( ( ( x  x.  Q
)  e.  RR  /\  ( y  x.  P
)  e.  RR )  ->  -.  ( (
x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )
141117, 119, 140syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) )
142141ex 423 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
143 imnan 411 . . . . . . . . . 10  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  ->  -.  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <->  -.  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
144142, 143sylib 188 . . . . . . . . 9  |-  ( ph  ->  -.  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
145144nexdv 1857 . . . . . . . 8  |-  ( ph  ->  -.  E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
146145nexdv 1857 . . . . . . 7  |-  ( ph  ->  -.  E. x E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
147 opabn0 4295 . . . . . . . 8  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =/=  (/)  <->  E. x E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
148147necon1bbii 2498 . . . . . . 7  |-  ( -. 
E. x E. y
( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  =  (/) )
149146, 148sylib 188 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  =  (/) )
150139, 149syl5eq 2327 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  S )  =  (/) )
151 hashun 11364 . . . . 5  |-  ( ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin  /\  S  e.  Fin  /\  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  i^i  S
)  =  (/) )  -> 
( # `  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S ) )  =  ( ( # `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )  +  ( # `  S
) ) )
15226, 43, 150, 151syl3anc 1182 . . . 4  |-  ( ph  ->  ( # `  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  u.  S
) )  =  ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )
153 hashxp 11386 . . . . . 6  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( (
# `  ( 1 ... M ) )  x.  ( # `  (
1 ... N ) ) ) )
15420, 21, 153syl2anc 642 . . . . 5  |-  ( ph  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( (
# `  ( 1 ... M ) )  x.  ( # `  (
1 ... N ) ) ) )
155 oddprm 12868 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
1562, 155syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
1576, 156syl5eqel 2367 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
158157nnnn0d 10018 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
159 hashfz1 11345 . . . . . . 7  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
160158, 159syl 15 . . . . . 6  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
16156nnnn0d 10018 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
162 hashfz1 11345 . . . . . . 7  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
163161, 162syl 15 . . . . . 6  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
164160, 163oveq12d 5876 . . . . 5  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  x.  ( # `  (
1 ... N ) ) )  =  ( M  x.  N ) )
165154, 164eqtrd 2315 . . . 4  |-  ( ph  ->  ( # `  (
( 1 ... M
)  X.  ( 1 ... N ) ) )  =  ( M  x.  N ) )
166134, 152, 1653eqtr3d 2323 . . 3  |-  ( ph  ->  ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) )  =  ( M  x.  N
) )
167166oveq2d 5874 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( # `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( # `  S ) ) )  =  ( -u 1 ^ ( M  x.  N ) ) )
16837, 48, 1673eqtr2d 2321 1  |-  ( ph  ->  ( ( P  / L Q )  x.  ( Q  / L P ) )  =  ( -u
1 ^ ( M  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023   {copab 4076    X. cxp 4687   `'ccnv 4688   Rel wrel 4694   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782   ^cexp 11104   #chash 11337    || cdivides 12531    gcd cgcd 12685   Primecprime 12758    / Lclgs 20533
This theorem is referenced by:  lgsquad  20596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-gsum 13405  df-imas 13411  df-divs 13412  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-rnghom 15496  df-drng 15514  df-field 15515  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-nzr 16010  df-rlreg 16024  df-domn 16025  df-idom 16026  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-lgs 20534
  Copyright terms: Public domain W3C validator