MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval4a Unicode version

Theorem lgsval4a 20557
Description: Same as lgsval4 20555 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) )
Assertion
Ref Expression
lgsval4a  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  (  seq  1 (  x.  ,  F ) `  N ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval4a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  A  e.  ZZ )
2 nnz 10045 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
32adantl 452 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4 nnne0 9778 . . . 4  |-  ( N  e.  NN  ->  N  =/=  0 )
54adantl 452 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
6 lgsval4.1 . . . 4  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) )
76lgsval4 20555 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )
81, 3, 5, 7syl3anc 1182 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
9 nngt0 9775 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
109adantl 452 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
11 0re 8838 . . . . . . 7  |-  0  e.  RR
12 nnre 9753 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
1312adantl 452 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
14 ltnsym 8919 . . . . . . 7  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1511, 13, 14sylancr 644 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1610, 15mpd 14 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  N  <  0
)
1716intnanrd 883 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  ( N  <  0  /\  A  <  0 ) )
18 iffalse 3572 . . . 4  |-  ( -.  ( N  <  0  /\  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
1917, 18syl 15 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
20 nnnn0 9972 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2120adantl 452 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN0 )
2221nn0ge0d 10021 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <_  N )
2313, 22absidd 11905 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( abs `  N
)  =  N )
2423fveq2d 5529 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  N
) )  =  (  seq  1 (  x.  ,  F ) `  N ) )
2519, 24oveq12d 5876 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  F ) `  ( abs `  N ) ) )  =  ( 1  x.  (  seq  1
(  x.  ,  F
) `  N )
) )
26 simpr 447 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
27 nnuz 10263 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2826, 27syl6eleq 2373 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
296lgsfcl3 20556 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> ZZ )
301, 3, 5, 29syl3anc 1182 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  F : NN --> ZZ )
31 elfznn 10819 . . . . . 6  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
32 ffvelrn 5663 . . . . . 6  |-  ( ( F : NN --> ZZ  /\  x  e.  NN )  ->  ( F `  x
)  e.  ZZ )
3330, 31, 32syl2an 463 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  x  e.  ( 1 ... N ) )  ->  ( F `  x )  e.  ZZ )
34 zmulcl 10066 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3534adantl 452 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  y
)  e.  ZZ )
3628, 33, 35seqcl 11066 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 N )  e.  ZZ )
3736zcnd 10118 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 N )  e.  CC )
3837mulid2d 8853 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 1  x.  (  seq  1 (  x.  ,  F ) `  N
) )  =  (  seq  1 (  x.  ,  F ) `  N ) )
398, 25, 383eqtrd 2319 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  (  seq  1 (  x.  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   ifcif 3565   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867   -ucneg 9038   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046   ^cexp 11104   abscabs 11719   Primecprime 12758    pCnt cpc 12889    / Lclgs 20533
This theorem is referenced by:  lgsmod  20560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-lgs 20534
  Copyright terms: Public domain W3C validator