MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval4a Structured version   Unicode version

Theorem lgsval4a 21107
Description: Same as lgsval4 21105 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval4.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) )
Assertion
Ref Expression
lgsval4a  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  (  seq  1 (  x.  ,  F ) `  N ) )
Distinct variable groups:    A, n    n, N
Allowed substitution hint:    F( n)

Proof of Theorem lgsval4a
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  A  e.  ZZ )
2 nnz 10308 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
32adantl 454 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4 nnne0 10037 . . . 4  |-  ( N  e.  NN  ->  N  =/=  0 )
54adantl 454 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
6 lgsval4.1 . . . 4  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) )
76lgsval4 21105 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )
81, 3, 5, 7syl3anc 1185 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  F
) `  ( abs `  N ) ) ) )
9 nngt0 10034 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
109adantl 454 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
11 0re 9096 . . . . . . 7  |-  0  e.  RR
12 nnre 10012 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
1312adantl 454 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
14 ltnsym 9177 . . . . . . 7  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1511, 13, 14sylancr 646 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <  N  ->  -.  N  <  0
) )
1610, 15mpd 15 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  N  <  0
)
1716intnanrd 885 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  -.  ( N  <  0  /\  A  <  0 ) )
18 iffalse 3748 . . . 4  |-  ( -.  ( N  <  0  /\  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
1917, 18syl 16 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  1 )
20 nnnn0 10233 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2120adantl 454 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN0 )
2221nn0ge0d 10282 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  0  <_  N )
2313, 22absidd 12230 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( abs `  N
)  =  N )
2423fveq2d 5735 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 ( abs `  N
) )  =  (  seq  1 (  x.  ,  F ) `  N ) )
2519, 24oveq12d 6102 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  F ) `  ( abs `  N ) ) )  =  ( 1  x.  (  seq  1
(  x.  ,  F
) `  N )
) )
26 simpr 449 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
27 nnuz 10526 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2826, 27syl6eleq 2528 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
296lgsfcl3 21106 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> ZZ )
301, 3, 5, 29syl3anc 1185 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  F : NN --> ZZ )
31 elfznn 11085 . . . . . 6  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
32 ffvelrn 5871 . . . . . 6  |-  ( ( F : NN --> ZZ  /\  x  e.  NN )  ->  ( F `  x
)  e.  ZZ )
3330, 31, 32syl2an 465 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  x  e.  ( 1 ... N ) )  ->  ( F `  x )  e.  ZZ )
34 zmulcl 10329 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3534adantl 454 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  NN )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  x.  y
)  e.  ZZ )
3628, 33, 35seqcl 11348 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 N )  e.  ZZ )
3736zcnd 10381 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  (  seq  1 (  x.  ,  F ) `
 N )  e.  CC )
3837mulid2d 9111 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( 1  x.  (  seq  1 (  x.  ,  F ) `  N
) )  =  (  seq  1 (  x.  ,  F ) `  N ) )
398, 25, 383eqtrd 2474 1  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  / L N )  =  (  seq  1 (  x.  ,  F ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   ifcif 3741   class class class wbr 4215    e. cmpt 4269   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   0cc0 8995   1c1 8996    x. cmul 9000    < clt 9125   -ucneg 9297   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048    seq cseq 11328   ^cexp 11387   abscabs 12044   Primecprime 13084    pCnt cpc 13215    / Lclgs 21083
This theorem is referenced by:  lgsmod  21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-dvds 12858  df-gcd 13012  df-prm 13085  df-phi 13160  df-pc 13216  df-lgs 21084
  Copyright terms: Public domain W3C validator