Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Unicode version

Theorem lhe4.4ex1a 27649
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 19407):  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x  =  -u ( 2  /  3
). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 19407 as simply the "Fundamental Theorem of Calculus", then ftc1 19405 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )

Proof of Theorem lhe4.4ex1a
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 8853 . . . . 5  |-  1  e.  RR
21a1i 10 . . . 4  |-  (  T. 
->  1  e.  RR )
3 2re 9831 . . . . 5  |-  2  e.  RR
43a1i 10 . . . 4  |-  (  T. 
->  2  e.  RR )
5 1lt2 9902 . . . . . 6  |-  1  <  2
61, 3, 5ltleii 8957 . . . . 5  |-  1  <_  2
76a1i 10 . . . 4  |-  (  T. 
->  1  <_  2 )
8 reex 8844 . . . . . . . 8  |-  RR  e.  _V
98prid1 3747 . . . . . . 7  |-  RR  e.  { RR ,  CC }
109a1i 10 . . . . . 6  |-  (  T. 
->  RR  e.  { RR ,  CC } )
11 recn 8843 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
12 3nn0 9999 . . . . . . . . . . 11  |-  3  e.  NN0
13 expcl 11137 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  3  e.  NN0 )  -> 
( y ^ 3 )  e.  CC )
1412, 13mpan2 652 . . . . . . . . . 10  |-  ( y  e.  CC  ->  (
y ^ 3 )  e.  CC )
1511, 14syl 15 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ^ 3 )  e.  CC )
16 3cn 9834 . . . . . . . . . 10  |-  3  e.  CC
17 3ne0 9847 . . . . . . . . . 10  |-  3  =/=  0
18 divcl 9446 . . . . . . . . . 10  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
1916, 17, 18mp3an23 1269 . . . . . . . . 9  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  e.  CC )
2015, 19syl 15 . . . . . . . 8  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  e.  CC )
21 mulcl 8837 . . . . . . . . 9  |-  ( ( 3  e.  CC  /\  y  e.  CC )  ->  ( 3  x.  y
)  e.  CC )
2216, 11, 21sylancr 644 . . . . . . . 8  |-  ( y  e.  RR  ->  (
3  x.  y )  e.  CC )
2320, 22subcld 9173 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
2423adantl 452 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
25 ovex 5899 . . . . . . 7  |-  ( ( y ^ 2 )  -  3 )  e. 
_V
2625a1i 10 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
2720adantl 452 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
28 ovex 5899 . . . . . . . 8  |-  ( y ^ 2 )  e. 
_V
2928a1i 10 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 2 )  e.  _V )
30 divrec2 9457 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3116, 17, 30mp3an23 1269 . . . . . . . . . . . 12  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3215, 31syl 15 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3332mpteq2ia 4118 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3433oveq2i 5885 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( RR  _D  ( y  e.  RR  |->  ( ( 1  / 
3 )  x.  (
y ^ 3 ) ) ) )
3515adantl 452 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 3 )  e.  CC )
36 ovex 5899 . . . . . . . . . . . 12  |-  ( 3  x.  ( y ^
2 ) )  e. 
_V
3736a1i 10 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  ( y ^ 2 ) )  e.  _V )
38 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  |->  ( y ^ 3 ) )  =  ( y  e.  CC  |->  ( y ^
3 ) )
3938, 14fmpti 5699 . . . . . . . . . . . . . 14  |-  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC
40 ssid 3210 . . . . . . . . . . . . . 14  |-  CC  C_  CC
41 ax-resscn 8810 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
42 3nn 9894 . . . . . . . . . . . . . . . . . 18  |-  3  e.  NN
43 dvexp 19318 . . . . . . . . . . . . . . . . . 18  |-  ( 3  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) ) )
4442, 43ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) )
45 ax-1cn 8811 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
46 2cn 9832 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  CC
47 2p1e3 9863 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
4846, 45, 47addcomli 9020 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  +  2 )  =  3
4916, 45, 46, 48subaddrii 9151 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  -  1 )  =  2
5049oveq2i 5885 . . . . . . . . . . . . . . . . . . 19  |-  ( y ^ ( 3  -  1 ) )  =  ( y ^ 2 )
5150oveq2i 5885 . . . . . . . . . . . . . . . . . 18  |-  ( 3  x.  ( y ^
( 3  -  1 ) ) )  =  ( 3  x.  (
y ^ 2 ) )
5251mpteq2i 4119 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  |->  ( 3  x.  ( y ^
( 3  -  1 ) ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
5344, 52eqtri 2316 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
5436, 53dmmpti 5389 . . . . . . . . . . . . . . 15  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  CC
5541, 54sseqtr4i 3224 . . . . . . . . . . . . . 14  |-  RR  C_  dom  ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )
56 dvres3 19279 . . . . . . . . . . . . . 14  |-  ( ( ( RR  e.  { RR ,  CC }  /\  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_ 
dom  ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) ) ) )  ->  ( RR  _D  ( ( y  e.  CC  |->  ( y ^
3 ) )  |`  RR ) )  =  ( ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR ) )
579, 39, 40, 55, 56mp4an 654 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )
58 resmpt 5016 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) ) )
5941, 58ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) )
6059oveq2i 5885 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )
6153reseq1i 4967 . . . . . . . . . . . . . 14  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( ( y  e.  CC  |->  ( 3  x.  ( y ^
2 ) ) )  |`  RR )
62 resmpt 5016 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
6341, 62ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6461, 63eqtri 2316 . . . . . . . . . . . . 13  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6557, 60, 643eqtr3i 2324 . . . . . . . . . . . 12  |-  ( RR 
_D  ( y  e.  RR  |->  ( y ^
3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6665a1i 10 . . . . . . . . . . 11  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
6745, 16, 17divcli 9518 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
6867a1i 10 . . . . . . . . . . 11  |-  (  T. 
->  ( 1  /  3
)  e.  CC )
6910, 35, 37, 66, 68dvmptcmul 19329 . . . . . . . . . 10  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( 1  /  3
)  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) ) ) )
7069trud 1314 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
71 sqcl 11182 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  (
y ^ 2 )  e.  CC )
72 mulcl 8837 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  ( y ^ 2 )  e.  CC )  ->  ( 3  x.  ( y ^ 2 ) )  e.  CC )
7316, 71, 72sylancr 644 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
3  x.  ( y ^ 2 ) )  e.  CC )
74 divrec2 9457 . . . . . . . . . . . . 13  |-  ( ( ( 3  x.  (
y ^ 2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7516, 17, 74mp3an23 1269 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( y ^ 2 ) )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7611, 73, 753syl 18 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
77 divcan3 9464 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7816, 17, 77mp3an23 1269 . . . . . . . . . . . 12  |-  ( ( y ^ 2 )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7911, 71, 783syl 18 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
8076, 79eqtr3d 2330 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) )  =  ( y ^
2 ) )
8180mpteq2ia 4118 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  ( y ^ 2 ) ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
8234, 70, 813eqtri 2320 . . . . . . . 8  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
8382a1i 10 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) ) )  =  ( y  e.  RR  |->  ( y ^ 2 ) ) )
8422adantl 452 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  y )  e.  CC )
8516elexi 2810 . . . . . . . 8  |-  3  e.  _V
8685a1i 10 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  3  e.  _V )
8711adantl 452 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  y  e.  CC )
881a1i 10 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  1  e.  RR )
8910dvmptid 19322 . . . . . . . . 9  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
9016a1i 10 . . . . . . . . 9  |-  (  T. 
->  3  e.  CC )
9110, 87, 88, 89, 90dvmptcmul 19329 . . . . . . . 8  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( 3  x.  1 ) ) )
9216mulid1i 8855 . . . . . . . . 9  |-  ( 3  x.  1 )  =  3
9392mpteq2i 4119 . . . . . . . 8  |-  ( y  e.  RR  |->  ( 3  x.  1 ) )  =  ( y  e.  RR  |->  3 )
9491, 93syl6eq 2344 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  3 ) )
9510, 27, 29, 83, 84, 86, 94dvmptsub 19332 . . . . . 6  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  -  3 ) ) )
96 iccssre 10747 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
971, 3, 96mp2an 653 . . . . . . 7  |-  ( 1 [,] 2 )  C_  RR
9897a1i 10 . . . . . 6  |-  (  T. 
->  ( 1 [,] 2
)  C_  RR )
99 eqid 2296 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
10099tgioo2 18325 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
101 iccntr 18342 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
1021, 3, 101mp2an 653 . . . . . . 7  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( 1 [,] 2
) )  =  ( 1 (,) 2 )
103102a1i 10 . . . . . 6  |-  (  T. 
->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
10410, 24, 26, 95, 98, 100, 99, 103dvmptres2 19327 . . . . 5  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
105 ioossicc 10751 . . . . . . 7  |-  ( 1 (,) 2 )  C_  ( 1 [,] 2
)
106 resmpt 5016 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
107105, 106ax-mp 8 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
10897, 41sstri 3201 . . . . . . . . 9  |-  ( 1 [,] 2 )  C_  CC
109 resmpt 5016 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) ) )
110108, 109ax-mp 8 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
111 eqid 2296 . . . . . . . . . . . 12  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  =  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) )
112 subcl 9067 . . . . . . . . . . . . . 14  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC )  ->  ( ( y ^
2 )  -  3 )  e.  CC )
11316, 112mpan2 652 . . . . . . . . . . . . 13  |-  ( ( y ^ 2 )  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
11471, 113syl 15 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
115111, 114fmpti 5699 . . . . . . . . . . 11  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC
11640, 115, 403pm3.2i 1130 . . . . . . . . . 10  |-  ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )
117 ovex 5899 . . . . . . . . . . 11  |-  ( ( 2  x.  ( y ^ ( 2  -  1 ) ) )  -  0 )  e. 
_V
118 cnex 8834 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
119118prid2 3748 . . . . . . . . . . . . . 14  |-  CC  e.  { RR ,  CC }
120119a1i 10 . . . . . . . . . . . . 13  |-  (  T. 
->  CC  e.  { RR ,  CC } )
12171adantl 452 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
y ^ 2 )  e.  CC )
122 ovex 5899 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( y ^
( 2  -  1 ) ) )  e. 
_V
123122a1i 10 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
2  x.  ( y ^ ( 2  -  1 ) ) )  e.  _V )
124 2nn 9893 . . . . . . . . . . . . . . 15  |-  2  e.  NN
125 dvexp 19318 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) ) )
126124, 125ax-mp 8 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) )
127126a1i 10 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( y ^ 2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ ( 2  -  1 ) ) ) ) )
12816a1i 10 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  3  e.  CC )
129 c0ex 8848 . . . . . . . . . . . . . 14  |-  0  e.  _V
130129a1i 10 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  0  e.  _V )
131120, 90dvmptc 19323 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  3 ) )  =  ( y  e.  CC  |->  0 ) )
132120, 121, 123, 127, 128, 130, 131dvmptsub 19332 . . . . . . . . . . . 12  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  (
y ^ ( 2  -  1 ) ) )  -  0 ) ) )
133132trud 1314 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  ( y ^
( 2  -  1 ) ) )  - 
0 ) )
134117, 133dmmpti 5389 . . . . . . . . . 10  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC
135 dvcn 19286 . . . . . . . . . 10  |-  ( ( ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )  /\  dom  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC )  -> 
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  e.  ( CC -cn-> CC ) )
136116, 134, 135mp2an 653 . . . . . . . . 9  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC -cn-> CC )
137 rescncf 18417 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC
-cn-> CC )  ->  (
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
138108, 136, 137mp2 17 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
139110, 138eqeltrri 2367 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
140 rescncf 18417 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  ( ( 1 [,] 2
) -cn-> CC )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  e.  ( ( 1 (,) 2 )
-cn-> CC ) ) )
141105, 139, 140mp2 17 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
142107, 141eqeltrri 2367 . . . . 5  |-  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
143104, 142syl6eqel 2384 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  ( ( 1 (,) 2
) -cn-> CC ) )
144105a1i 10 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  C_  ( 1 [,] 2 ) )
145 ioombl 18938 . . . . . . 7  |-  ( 1 (,) 2 )  e. 
dom  vol
146145a1i 10 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  e.  dom  vol )
14725a1i 10 . . . . . 6  |-  ( (  T.  /\  y  e.  ( 1 [,] 2
) )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
148 cniccibl 19211 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) )  -> 
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
1491, 3, 139, 148mp3an 1277 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  L ^1
150149a1i 10 . . . . . 6  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
151144, 146, 147, 150iblss 19175 . . . . 5  |-  (  T. 
->  ( y  e.  ( 1 (,) 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
152104, 151eqeltrd 2370 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  L ^1 )
153 resmpt 5016 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )
15497, 153ax-mp 8 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
155 eqid 2296 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
156155, 23fmpti 5699 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC
157 ssid 3210 . . . . . . . . 9  |-  RR  C_  RR
15841, 156, 1573pm3.2i 1130 . . . . . . . 8  |-  ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )
15995trud 1314 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  - 
3 ) )
16025, 159dmmpti 5389 . . . . . . . 8  |-  dom  ( RR  _D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR
161 dvcn 19286 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )  /\  dom  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR )  -> 
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( RR -cn-> CC ) )
162158, 160, 161mp2an 653 . . . . . . 7  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( RR -cn-> CC )
163 rescncf 18417 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  e.  ( RR
-cn-> CC )  ->  (
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
16497, 162, 163mp2 17 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
165154, 164eqeltrri 2367 . . . . 5  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
166165a1i 10 . . . 4  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( ( 1 [,] 2
) -cn-> CC ) )
1672, 4, 7, 143, 152, 166ftc2 19407 . . 3  |-  (  T. 
->  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ` 
2 )  -  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
) ) )
168167trud 1314 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) `
 1 ) )
169 itgeq2 19148 . . 3  |-  ( A. x  e.  ( 1 (,) 2 ) ( ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 )  ->  S. ( 1 (,) 2
) ( ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ) `
 x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x )
170 oveq1 5881 . . . . 5  |-  ( y  =  x  ->  (
y ^ 2 )  =  ( x ^
2 ) )
171170oveq1d 5889 . . . 4  |-  ( y  =  x  ->  (
( y ^ 2 )  -  3 )  =  ( ( x ^ 2 )  - 
3 ) )
172104trud 1314 . . . 4  |-  ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
173 ovex 5899 . . . 4  |-  ( ( x ^ 2 )  -  3 )  e. 
_V
174171, 172, 173fvmpt 5618 . . 3  |-  ( x  e.  ( 1 (,) 2 )  ->  (
( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 ) )
175169, 174mprg 2625 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x
1763leidi 9323 . . . . . . . . 9  |-  2  <_  2
1771, 3elicc2i 10732 . . . . . . . . 9  |-  ( 2  e.  ( 1 [,] 2 )  <->  ( 2  e.  RR  /\  1  <_  2  /\  2  <_ 
2 ) )
1783, 6, 176, 177mpbir3an 1134 . . . . . . . 8  |-  2  e.  ( 1 [,] 2
)
179 oveq1 5881 . . . . . . . . . . . 12  |-  ( y  =  2  ->  (
y ^ 3 )  =  ( 2 ^ 3 ) )
180179oveq1d 5889 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
( y ^ 3 )  /  3 )  =  ( ( 2 ^ 3 )  / 
3 ) )
181 oveq2 5882 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
3  x.  y )  =  ( 3  x.  2 ) )
182180, 181oveq12d 5892 . . . . . . . . . 10  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) ) )
183 cu2 11217 . . . . . . . . . . . . 13  |-  ( 2 ^ 3 )  =  8
184183oveq1i 5884 . . . . . . . . . . . 12  |-  ( ( 2 ^ 3 )  /  3 )  =  ( 8  /  3
)
185 3t2e6 9888 . . . . . . . . . . . 12  |-  ( 3  x.  2 )  =  6
186184, 185oveq12i 5886 . . . . . . . . . . 11  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 8  / 
3 )  -  6 )
187 6nn 9897 . . . . . . . . . . . . . . . 16  |-  6  e.  NN
188187nncni 9772 . . . . . . . . . . . . . . 15  |-  6  e.  CC
18946, 188, 16, 17divdiri 9533 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 6  /  3 ) )
190 6p2e8 9880 . . . . . . . . . . . . . . . 16  |-  ( 6  +  2 )  =  8
191188, 46, 190addcomli 9020 . . . . . . . . . . . . . . 15  |-  ( 2  +  6 )  =  8
192191oveq1i 5884 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( 8  /  3
)
193188, 16, 46, 17divmuli 9530 . . . . . . . . . . . . . . . 16  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
194185, 193mpbir 200 . . . . . . . . . . . . . . 15  |-  ( 6  /  3 )  =  2
195194oveq2i 5885 . . . . . . . . . . . . . 14  |-  ( ( 2  /  3 )  +  ( 6  / 
3 ) )  =  ( ( 2  / 
3 )  +  2 )
196189, 192, 1953eqtr3i 2324 . . . . . . . . . . . . 13  |-  ( 8  /  3 )  =  ( ( 2  / 
3 )  +  2 )
197196oveq1i 5884 . . . . . . . . . . . 12  |-  ( ( 8  /  3 )  -  6 )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
19846, 16, 17divcli 9518 . . . . . . . . . . . . 13  |-  ( 2  /  3 )  e.  CC
199 subsub3 9095 . . . . . . . . . . . . 13  |-  ( ( ( 2  /  3
)  e.  CC  /\  6  e.  CC  /\  2  e.  CC )  ->  (
( 2  /  3
)  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  - 
6 ) )
200198, 188, 46, 199mp3an 1277 . . . . . . . . . . . 12  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
201197, 200eqtr4i 2319 . . . . . . . . . . 11  |-  ( ( 8  /  3 )  -  6 )  =  ( ( 2  / 
3 )  -  (
6  -  2 ) )
202 4cn 9836 . . . . . . . . . . . . 13  |-  4  e.  CC
203 4p2e6 9873 . . . . . . . . . . . . . 14  |-  ( 4  +  2 )  =  6
204202, 46, 203addcomli 9020 . . . . . . . . . . . . 13  |-  ( 2  +  4 )  =  6
205188, 46, 202, 204subaddrii 9151 . . . . . . . . . . . 12  |-  ( 6  -  2 )  =  4
206205oveq2i 5885 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( 2  / 
3 )  -  4 )
207186, 201, 2063eqtri 2320 . . . . . . . . . 10  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 2  / 
3 )  -  4 )
208182, 207syl6eq 2344 . . . . . . . . 9  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 2  /  3 )  - 
4 ) )
209 eqid 2296 . . . . . . . . 9  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
210 ovex 5899 . . . . . . . . 9  |-  ( ( 2  /  3 )  -  4 )  e. 
_V
211208, 209, 210fvmpt 5618 . . . . . . . 8  |-  ( 2  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  =  ( ( 2  /  3 )  -  4 ) )
212178, 211ax-mp 8 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  =  ( ( 2  /  3 )  - 
4 )
2131leidi 9323 . . . . . . . . 9  |-  1  <_  1
2141, 3elicc2i 10732 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,] 2 )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  <_ 
2 ) )
2151, 213, 6, 214mpbir3an 1134 . . . . . . . 8  |-  1  e.  ( 1 [,] 2
)
216 oveq1 5881 . . . . . . . . . . . 12  |-  ( y  =  1  ->  (
y ^ 3 )  =  ( 1 ^ 3 ) )
217216oveq1d 5889 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1 ^ 3 )  / 
3 ) )
218 oveq2 5882 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
3  x.  y )  =  ( 3  x.  1 ) )
219217, 218oveq12d 5892 . . . . . . . . . 10  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) ) )
22042nnzi 10063 . . . . . . . . . . . . 13  |-  3  e.  ZZ
221 1exp 11147 . . . . . . . . . . . . 13  |-  ( 3  e.  ZZ  ->  (
1 ^ 3 )  =  1 )
222220, 221ax-mp 8 . . . . . . . . . . . 12  |-  ( 1 ^ 3 )  =  1
223222oveq1i 5884 . . . . . . . . . . 11  |-  ( ( 1 ^ 3 )  /  3 )  =  ( 1  /  3
)
224223, 92oveq12i 5886 . . . . . . . . . 10  |-  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) )  =  ( ( 1  / 
3 )  -  3 )
225219, 224syl6eq 2344 . . . . . . . . 9  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 1  /  3 )  - 
3 ) )
226 ovex 5899 . . . . . . . . 9  |-  ( ( 1  /  3 )  -  3 )  e. 
_V
227225, 209, 226fvmpt 5618 . . . . . . . 8  |-  ( 1  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
)  =  ( ( 1  /  3 )  -  3 ) )
228215, 227ax-mp 8 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 )  =  ( ( 1  /  3 )  - 
3 )
229212, 228oveq12i 5886 . . . . . 6  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )
230 sub4 9108 . . . . . . 7  |-  ( ( ( ( 2  / 
3 )  e.  CC  /\  4  e.  CC )  /\  ( ( 1  /  3 )  e.  CC  /\  3  e.  CC ) )  -> 
( ( ( 2  /  3 )  - 
4 )  -  (
( 1  /  3
)  -  3 ) )  =  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) ) )
231198, 202, 67, 16, 230mp4an 654 . . . . . 6  |-  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )  =  ( ( ( 2  /  3 )  -  ( 1  /  3
) )  -  (
4  -  3 ) )
23216, 17pm3.2i 441 . . . . . . . . 9  |-  ( 3  e.  CC  /\  3  =/=  0 )
233 divsubdir 9472 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 2  -  1 )  / 
3 )  =  ( ( 2  /  3
)  -  ( 1  /  3 ) ) )
23446, 45, 232, 233mp3an 1277 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( ( 2  / 
3 )  -  (
1  /  3 ) )
235 1p1e2 9856 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
23646, 45, 45, 235subaddrii 9151 . . . . . . . . 9  |-  ( 2  -  1 )  =  1
237236oveq1i 5884 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( 1  /  3
)
238234, 237eqtr3i 2318 . . . . . . 7  |-  ( ( 2  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  /  3
)
239 3p1e4 9864 . . . . . . . 8  |-  ( 3  +  1 )  =  4
240202, 16, 45, 239subaddrii 9151 . . . . . . 7  |-  ( 4  -  3 )  =  1
241238, 240oveq12i 5886 . . . . . 6  |-  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) )  =  ( ( 1  / 
3 )  -  1 )
242229, 231, 2413eqtri 2320 . . . . 5  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  1 )
24316, 17dividi 9509 . . . . . 6  |-  ( 3  /  3 )  =  1
244243oveq2i 5885 . . . . 5  |-  ( ( 1  /  3 )  -  ( 3  / 
3 ) )  =  ( ( 1  / 
3 )  -  1 )
245242, 244eqtr4i 2319 . . . 4  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  ( 3  / 
3 ) )
246 divsubdir 9472 . . . . 5  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 1  -  3 )  / 
3 )  =  ( ( 1  /  3
)  -  ( 3  /  3 ) ) )
24745, 16, 232, 246mp3an 1277 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( ( 1  / 
3 )  -  (
3  /  3 ) )
248245, 247eqtr4i 2319 . . 3  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  -  3 )  /  3 )
249 divneg 9471 . . . . 5  |-  ( ( 2  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
2  /  3 )  =  ( -u 2  /  3 ) )
25046, 16, 17, 249mp3an 1277 . . . 4  |-  -u (
2  /  3 )  =  ( -u 2  /  3 )
25116, 45negsubdi2i 9148 . . . . . 6  |-  -u (
3  -  1 )  =  ( 1  -  3 )
25249negeqi 9061 . . . . . 6  |-  -u (
3  -  1 )  =  -u 2
253251, 252eqtr3i 2318 . . . . 5  |-  ( 1  -  3 )  = 
-u 2
254253oveq1i 5884 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( -u 2  / 
3 )
255250, 254eqtr4i 2319 . . 3  |-  -u (
2  /  3 )  =  ( ( 1  -  3 )  / 
3 )
256248, 255eqtr4i 2319 . 2  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  -u (
2  /  3 )
257168, 175, 2563eqtr3i 2324 1  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165   {cpr 3654   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   6c6 9815   8c8 9817   NN0cn0 9981   ZZcz 10040   (,)cioo 10672   [,]cicc 10675   ^cexp 11120   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   intcnt 16770   -cn->ccncf 18396   volcvol 18839   L ^1cibl 18988   S.citg 18989    _D cdv 19229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-itg 18995  df-0p 19041  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator