Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp1cvr Unicode version

Theorem lhp1cvr 30113
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhp1cvr.u  |-  .1.  =  ( 1. `  K )
lhp1cvr.c  |-  C  =  (  <o  `  K )
lhp1cvr.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp1cvr  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )

Proof of Theorem lhp1cvr
StepHypRef Expression
1 eqid 2387 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 lhp1cvr.u . . 3  |-  .1.  =  ( 1. `  K )
3 lhp1cvr.c . . 3  |-  C  =  (  <o  `  K )
4 lhp1cvr.h . . 3  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4islhp 30110 . 2  |-  ( K  e.  A  ->  ( W  e.  H  <->  ( W  e.  ( Base `  K
)  /\  W C  .1.  ) ) )
65simplbda 608 1  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394   Basecbs 13396   1.cp1 14394    <o ccvr 29377   LHypclh 30098
This theorem is referenced by:  lhplt  30114  lhp2lt  30115  lhpexlt  30116  lhpexnle  30120  lhpjat1  30134  lhpmcvr  30137  cdlemb2  30155  lhpat  30157  dih1  31401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-lhyp 30102
  Copyright terms: Public domain W3C validator