Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp1cvr Unicode version

Theorem lhp1cvr 30188
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhp1cvr.u  |-  .1.  =  ( 1. `  K )
lhp1cvr.c  |-  C  =  (  <o  `  K )
lhp1cvr.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp1cvr  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )

Proof of Theorem lhp1cvr
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 lhp1cvr.u . . 3  |-  .1.  =  ( 1. `  K )
3 lhp1cvr.c . . 3  |-  C  =  (  <o  `  K )
4 lhp1cvr.h . . 3  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4islhp 30185 . 2  |-  ( K  e.  A  ->  ( W  e.  H  <->  ( W  e.  ( Base `  K
)  /\  W C  .1.  ) ) )
65simplbda 607 1  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   1.cp1 14144    <o ccvr 29452   LHypclh 30173
This theorem is referenced by:  lhplt  30189  lhp2lt  30190  lhpexlt  30191  lhpexnle  30195  lhpjat1  30209  lhpmcvr  30212  cdlemb2  30230  lhpat  30232  dih1  31476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-lhyp 30177
  Copyright terms: Public domain W3C validator