Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp1cvr Structured version   Unicode version

Theorem lhp1cvr 30733
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhp1cvr.u  |-  .1.  =  ( 1. `  K )
lhp1cvr.c  |-  C  =  (  <o  `  K )
lhp1cvr.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp1cvr  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )

Proof of Theorem lhp1cvr
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 lhp1cvr.u . . 3  |-  .1.  =  ( 1. `  K )
3 lhp1cvr.c . . 3  |-  C  =  (  <o  `  K )
4 lhp1cvr.h . . 3  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4islhp 30730 . 2  |-  ( K  e.  A  ->  ( W  e.  H  <->  ( W  e.  ( Base `  K
)  /\  W C  .1.  ) ) )
65simplbda 608 1  |-  ( ( K  e.  A  /\  W  e.  H )  ->  W C  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446   Basecbs 13461   1.cp1 14459    <o ccvr 29997   LHypclh 30718
This theorem is referenced by:  lhplt  30734  lhp2lt  30735  lhpexlt  30736  lhpexnle  30740  lhpjat1  30754  lhpmcvr  30757  cdlemb2  30775  lhpat  30777  dih1  32021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-lhyp 30722
  Copyright terms: Public domain W3C validator