Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0ne Unicode version

Theorem lhp2at0ne 30201
Description: Inequality for joins with 2 different atoms (or an atom and zero) under co-atom  W. (Contributed by NM, 28-Jul-2013.)
Hypotheses
Ref Expression
lhp2at0nle.l  |-  .<_  =  ( le `  K )
lhp2at0nle.j  |-  .\/  =  ( join `  K )
lhp2at0nle.z  |-  .0.  =  ( 0. `  K )
lhp2at0nle.a  |-  A  =  ( Atoms `  K )
lhp2at0nle.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp2at0ne  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( P  .\/  U )  =/=  ( Q  .\/  V
) )

Proof of Theorem lhp2at0ne
StepHypRef Expression
1 simp11 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp3 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  U  =/=  V )
4 simp2l 983 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W ) )
5 simp2r 984 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( V  e.  A  /\  V  .<_  W ) )
6 lhp2at0nle.l . . . 4  |-  .<_  =  ( le `  K )
7 lhp2at0nle.j . . . 4  |-  .\/  =  ( join `  K )
8 lhp2at0nle.z . . . 4  |-  .0.  =  ( 0. `  K )
9 lhp2at0nle.a . . . 4  |-  A  =  ( Atoms `  K )
10 lhp2at0nle.h . . . 4  |-  H  =  ( LHyp `  K
)
116, 7, 8, 9, 10lhp2at0nle 30200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V
)  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  ->  -.  V  .<_  ( P  .\/  U ) )
121, 2, 3, 4, 5, 11syl311anc 1198 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  -.  V  .<_  ( P  .\/  U ) )
13 simp11l 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  K  e.  HL )
14 simp13 989 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  Q  e.  A )
15 simp2rl 1026 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  V  e.  A )
166, 7, 9hlatlej2 29541 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  V  e.  A )  ->  V  .<_  ( Q  .\/  V ) )
1713, 14, 15, 16syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  V  .<_  ( Q  .\/  V
) )
1817adantr 452 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  /\  ( P  .\/  U )  =  ( Q  .\/  V
) )  ->  V  .<_  ( Q  .\/  V
) )
19 simpr 448 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  /\  ( P  .\/  U )  =  ( Q  .\/  V
) )  ->  ( P  .\/  U )  =  ( Q  .\/  V
) )
2018, 19breqtrrd 4172 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  /\  ( P  .\/  U )  =  ( Q  .\/  V
) )  ->  V  .<_  ( P  .\/  U
) )
2120ex 424 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  (
( P  .\/  U
)  =  ( Q 
.\/  V )  ->  V  .<_  ( P  .\/  U ) ) )
2221necon3bd 2580 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( -.  V  .<_  ( P 
.\/  U )  -> 
( P  .\/  U
)  =/=  ( Q 
.\/  V ) ) )
2312, 22mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( (
( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( P  .\/  U )  =/=  ( Q  .\/  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   lecple 13456   joincjn 14321   0.cp0 14386   Atomscatm 29429   HLchlt 29516   LHypclh 30149
This theorem is referenced by:  cdlemg31b0a  30860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153
  Copyright terms: Public domain W3C validator