Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1 Structured version   Unicode version

Theorem lhpexle1 30805
Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l  |-  .<_  =  ( le `  K )
lhpex1.a  |-  A  =  ( Atoms `  K )
lhpex1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexle1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X ) )
Distinct variable groups:    .<_ , p    A, p    H, p    K, p    W, p    X, p

Proof of Theorem lhpexle1
StepHypRef Expression
1 lhpex1.l . . . . 5  |-  .<_  =  ( le `  K )
2 lhpex1.a . . . . 5  |-  A  =  ( Atoms `  K )
3 lhpex1.h . . . . 5  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexle 30802 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  p  .<_  W )
5 tru 1330 . . . . . 6  |-  T.
65jctr 527 . . . . 5  |-  ( p 
.<_  W  ->  ( p  .<_  W  /\  T.  )
)
76reximi 2813 . . . 4  |-  ( E. p  e.  A  p 
.<_  W  ->  E. p  e.  A  ( p  .<_  W  /\  T.  )
)
84, 7syl 16 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  T.  ) )
9 simpll 731 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  K  e.  HL )
10 simprl 733 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  X  e.  A )
11 eqid 2436 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1211, 3lhpbase 30795 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1312ad2antlr 708 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  W  e.  ( Base `  K
) )
14 eqid 2436 . . . . . 6  |-  ( lt
`  K )  =  ( lt `  K
)
151, 14, 2, 3lhplt 30797 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  X
( lt `  K
) W )
1611, 14, 22atlt 30236 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  A  /\  W  e.  ( Base `  K ) )  /\  X ( lt `  K ) W )  ->  E. p  e.  A  ( p  =/=  X  /\  p ( lt `  K ) W ) )
179, 10, 13, 15, 16syl31anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  =/=  X  /\  p ( lt `  K ) W ) )
18 simp3r 986 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  p ( lt `  K ) W )
19 simp1ll 1020 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  K  e.  HL )
20 simp2 958 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  p  e.  A )
21 simp1lr 1021 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  W  e.  H )
221, 14pltle 14418 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  A  /\  W  e.  H )  ->  ( p ( lt
`  K ) W  ->  p  .<_  W ) )
2319, 20, 21, 22syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  ( p
( lt `  K
) W  ->  p  .<_  W ) )
2418, 23mpd 15 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  p  .<_  W )
25 a1tru 1339 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  T.  )
26 simp3l 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  p  =/=  X )
2724, 25, 263jca 1134 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A  /\  ( p  =/=  X  /\  p ( lt `  K ) W ) )  ->  ( p  .<_  W  /\  T.  /\  p  =/=  X ) )
28273expia 1155 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  /\  p  e.  A
)  ->  ( (
p  =/=  X  /\  p ( lt `  K ) W )  ->  ( p  .<_  W  /\  T.  /\  p  =/=  X ) ) )
2928reximdva 2818 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  ( E. p  e.  A  ( p  =/=  X  /\  p ( lt `  K ) W )  ->  E. p  e.  A  ( p  .<_  W  /\  T.  /\  p  =/=  X
) ) )
3017, 29mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  T.  /\  p  =/=  X ) )
318, 30lhpexle1lem 30804 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  T.  /\  p  =/=  X
) )
32 3simpb 955 . . 3  |-  ( ( p  .<_  W  /\  T.  /\  p  =/=  X
)  ->  ( p  .<_  W  /\  p  =/= 
X ) )
3332reximi 2813 . 2  |-  ( E. p  e.  A  ( p  .<_  W  /\  T.  /\  p  =/=  X
)  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/= 
X ) )
3431, 33syl 16 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   class class class wbr 4212   ` cfv 5454   Basecbs 13469   lecple 13536   ltcplt 14398   Atomscatm 30061   HLchlt 30148   LHypclh 30781
This theorem is referenced by:  lhpexle2lem  30806  lhpexle2  30807  lhpex2leN  30810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-lhyp 30785
  Copyright terms: Public domain W3C validator