Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1lem Unicode version

Theorem lhpexle1lem 30196
Description: Lemma for lhpexle1 30197 and others that eliminates restrictions on  X. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpexle1lem.1  |-  ( ph  ->  E. p  e.  A  ( p  .<_  W  /\  ps ) )
lhpexle1lem.2  |-  ( (
ph  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) )
Assertion
Ref Expression
lhpexle1lem  |-  ( ph  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X
) )
Distinct variable groups:    .<_ , p    A, p    W, p    X, p    ph, p
Allowed substitution hint:    ps( p)

Proof of Theorem lhpexle1lem
StepHypRef Expression
1 lhpexle1lem.1 . . . 4  |-  ( ph  ->  E. p  e.  A  ( p  .<_  W  /\  ps ) )
21adantr 451 . . 3  |-  ( (
ph  /\  -.  X  e.  A )  ->  E. p  e.  A  ( p  .<_  W  /\  ps )
)
3 simprl 732 . . . . . 6  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  p  .<_  W )
4 simprr 733 . . . . . 6  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  ps )
5 simplr 731 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  p  e.  A )
6 simpllr 735 . . . . . . 7  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  -.  X  e.  A )
7 nelne2 2536 . . . . . . 7  |-  ( ( p  e.  A  /\  -.  X  e.  A
)  ->  p  =/=  X )
85, 6, 7syl2anc 642 . . . . . 6  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  p  =/=  X )
93, 4, 83jca 1132 . . . . 5  |-  ( ( ( ( ph  /\  -.  X  e.  A
)  /\  p  e.  A )  /\  (
p  .<_  W  /\  ps ) )  ->  (
p  .<_  W  /\  ps  /\  p  =/=  X ) )
109ex 423 . . . 4  |-  ( ( ( ph  /\  -.  X  e.  A )  /\  p  e.  A
)  ->  ( (
p  .<_  W  /\  ps )  ->  ( p  .<_  W  /\  ps  /\  p  =/=  X ) ) )
1110reximdva 2655 . . 3  |-  ( (
ph  /\  -.  X  e.  A )  ->  ( E. p  e.  A  ( p  .<_  W  /\  ps )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) ) )
122, 11mpd 14 . 2  |-  ( (
ph  /\  -.  X  e.  A )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) )
131adantr 451 . . 3  |-  ( (
ph  /\  -.  X  .<_  W )  ->  E. p  e.  A  ( p  .<_  W  /\  ps )
)
14 simprl 732 . . . . . 6  |-  ( ( ( ph  /\  -.  X  .<_  W )  /\  ( p  .<_  W  /\  ps ) )  ->  p  .<_  W )
15 simprr 733 . . . . . 6  |-  ( ( ( ph  /\  -.  X  .<_  W )  /\  ( p  .<_  W  /\  ps ) )  ->  ps )
16 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  -.  X  .<_  W )  /\  ( p  .<_  W  /\  ps ) )  ->  -.  X  .<_  W )
17 nbrne2 4041 . . . . . . 7  |-  ( ( p  .<_  W  /\  -.  X  .<_  W )  ->  p  =/=  X
)
1814, 16, 17syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  -.  X  .<_  W )  /\  ( p  .<_  W  /\  ps ) )  ->  p  =/=  X )
1914, 15, 183jca 1132 . . . . 5  |-  ( ( ( ph  /\  -.  X  .<_  W )  /\  ( p  .<_  W  /\  ps ) )  ->  (
p  .<_  W  /\  ps  /\  p  =/=  X ) )
2019ex 423 . . . 4  |-  ( (
ph  /\  -.  X  .<_  W )  ->  (
( p  .<_  W  /\  ps )  ->  ( p 
.<_  W  /\  ps  /\  p  =/=  X ) ) )
2120reximdv 2654 . . 3  |-  ( (
ph  /\  -.  X  .<_  W )  ->  ( E. p  e.  A  ( p  .<_  W  /\  ps )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) ) )
2213, 21mpd 14 . 2  |-  ( (
ph  /\  -.  X  .<_  W )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) )
23 lhpexle1lem.2 . 2  |-  ( (
ph  /\  ( X  e.  A  /\  X  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X ) )
2412, 22, 23pm2.61dda 768 1  |-  ( ph  ->  E. p  e.  A  ( p  .<_  W  /\  ps  /\  p  =/=  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023
This theorem is referenced by:  lhpexle1  30197  lhpexle2  30199  lhpexle3  30201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024
  Copyright terms: Public domain W3C validator