Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Structured version   Unicode version

Theorem lhpexle3lem 30882
Description: There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l  |-  .<_  =  ( le `  K )
lhpex1.a  |-  A  =  ( Atoms `  K )
lhpex1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexle3lem  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
Distinct variable groups:    .<_ , p    A, p    H, p    K, p    W, p    X, p    Y, p    Z, p

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 961 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 lhpex1.l . . . . 5  |-  .<_  =  ( le `  K )
3 lhpex1.a . . . . 5  |-  A  =  ( Atoms `  K )
4 lhpex1.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 30881 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )
61, 5syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )
7 simp31 994 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  .<_  W )
8 simp32 995 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  X )
9 simp1r 983 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  X  =  Y )
108, 9neeqtrd 2625 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  Y )
11 simp33 996 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  Z )
128, 10, 113jca 1135 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  -> 
( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) )
137, 12jca 520 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  -> 
( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
14133exp 1153 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( p  e.  A  ->  ( ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z
)  ->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) ) ) )
1514reximdvai 2818 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z
)  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) ) )
166, 15mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
17 simp11 988 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simp121 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  X  e.  A )
19 simp131 1093 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  X  .<_  W )
20 simp122 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  Y  e.  A )
21 simp132 1094 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  Y  .<_  W )
22 eqid 2438 . . . . . . . 8  |-  ( lt
`  K )  =  ( lt `  K
)
23 eqid 2438 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
242, 22, 23, 3, 4lhp2lt 30872 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  -> 
( X ( join `  K ) Y ) ( lt `  K
) W )
2517, 18, 19, 20, 21, 24syl122anc 1194 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( X
( join `  K ) Y ) ( lt
`  K ) W )
26 simp11l 1069 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  K  e.  HL )
27 eqid 2438 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2827, 23, 3hlatjcl 30238 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  ->  ( X ( join `  K ) Y )  e.  ( Base `  K
) )
2926, 18, 20, 28syl3anc 1185 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( X
( join `  K ) Y )  e.  (
Base `  K )
)
30 simp11r 1070 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  W  e.  H )
3127, 4lhpbase 30869 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3230, 31syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  W  e.  ( Base `  K )
)
3327, 2, 22, 3hlrelat1 30271 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X ( join `  K
) Y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( X ( join `  K
) Y ) ( lt `  K ) W  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) ) )
3426, 29, 32, 33syl3anc 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( ( X ( join `  K
) Y ) ( lt `  K ) W  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) ) )
3525, 34mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) )
36 simprrr 743 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  .<_  W )
3726adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  K  e.  HL )
38 hllat 30235 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
3937, 38syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  K  e.  Lat )
4027, 3atbase 30161 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
4140ad2antrl 710 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  e.  ( Base `  K )
)
4218adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  X  e.  A )
4327, 3atbase 30161 . . . . . . . . . . 11  |-  ( X  e.  A  ->  X  e.  ( Base `  K
) )
4442, 43syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  X  e.  ( Base `  K )
)
4520adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Y  e.  A )
4627, 3atbase 30161 . . . . . . . . . . 11  |-  ( Y  e.  A  ->  Y  e.  ( Base `  K
) )
4745, 46syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Y  e.  ( Base `  K )
)
48 simprrl 742 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  -.  p  .<_  ( X ( join `  K ) Y ) )
4927, 2, 23latnlej1l 14503 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  X )
5039, 41, 44, 47, 48, 49syl131anc 1198 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  X )
5127, 2, 23latnlej1r 14504 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Y )
5239, 41, 44, 47, 48, 51syl131anc 1198 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  Y )
53 simpl3 963 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Z  .<_  ( X ( join `  K
) Y ) )
54 nbrne2 4233 . . . . . . . . . . 11  |-  ( ( Z  .<_  ( X
( join `  K ) Y )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  Z  =/=  p )
5554necomd 2689 . . . . . . . . . 10  |-  ( ( Z  .<_  ( X
( join `  K ) Y )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Z )
5653, 48, 55syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  Z )
5750, 52, 563jca 1135 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  ( p  =/=  X  /\  p  =/= 
Y  /\  p  =/=  Z ) )
5836, 57jca 520 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
5958exp32 590 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( p  e.  A  ->  ( ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W )  -> 
( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) ) )
6059reximdvai 2818 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( E. p  e.  A  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) )
6135, 60mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
62613expa 1154 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  /\  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
63 simp11l 1069 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  K  e.  HL )
64 simp121 1090 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  e.  A )
65 simp122 1091 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  Y  e.  A )
66 simp2 959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  =/=  Y )
672, 23, 3hlsupr 30257 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  /\  X  =/=  Y
)  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/= 
Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
6863, 64, 65, 66, 67syl31anc 1188 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
6963adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  HL )
7069, 38syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  Lat )
7140ad2antrl 710 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  e.  ( Base `  K
) )
7264adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  A )
7365adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  A )
7469, 72, 73, 28syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  e.  ( Base `  K
) )
75 simp11r 1070 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  W  e.  H )
7675adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  H )
7776, 31syl 16 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  ( Base `  K
) )
78 simprr3 1008 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  ( X ( join `  K ) Y ) )
79 simp131 1093 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  .<_  W )
8079adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  .<_  W )
81 simp132 1094 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  Y  .<_  W )
8281adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  .<_  W )
8372, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  ( Base `  K
) )
8473, 46syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  ( Base `  K
) )
8527, 2, 23latjle12 14496 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X  .<_  W  /\  Y  .<_  W )  <-> 
( X ( join `  K ) Y ) 
.<_  W ) )
8670, 83, 84, 77, 85syl13anc 1187 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
( X  .<_  W  /\  Y  .<_  W )  <->  ( X
( join `  K ) Y )  .<_  W ) )
8780, 82, 86mpbi2and 889 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  .<_  W )
8827, 2, 70, 71, 74, 77, 78, 87lattrd 14492 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  W )
89 simprr1 1006 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  X )
90 simprr2 1007 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  Y )
91 simpl3 963 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  -.  Z  .<_  ( X (
join `  K ) Y ) )
92 nbrne2 4233 . . . . . . . . . 10  |-  ( ( p  .<_  ( X
( join `  K ) Y )  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Z )
9378, 91, 92syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  Z )
9489, 90, 933jca 1135 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z ) )
9588, 94jca 520 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
p  .<_  W  /\  (
p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z ) ) )
9695exp32 590 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  -> 
( p  e.  A  ->  ( ( p  =/= 
X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  ( p  .<_  W  /\  ( p  =/= 
X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) ) )
9796reximdvai 2818 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  -> 
( E. p  e.  A  ( p  =/= 
X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) )
9868, 97mpd 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
99983expa 1154 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  /\  -.  Z  .<_  ( X ( join `  K
) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
10062, 99pm2.61dan 768 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
10116, 100pm2.61dane 2684 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   lecple 13541   ltcplt 14403   joincjn 14406   Latclat 14479   Atomscatm 30135   HLchlt 30222   LHypclh 30855
This theorem is referenced by:  lhpexle3  30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30048  df-ol 30050  df-oml 30051  df-covers 30138  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-lhyp 30859
  Copyright terms: Public domain W3C validator