Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3lem Unicode version

Theorem lhpexle3lem 30200
Description: There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l  |-  .<_  =  ( le `  K )
lhpex1.a  |-  A  =  ( Atoms `  K )
lhpex1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpexle3lem  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
Distinct variable groups:    .<_ , p    A, p    H, p    K, p    W, p    X, p    Y, p    Z, p

Proof of Theorem lhpexle3lem
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 lhpex1.l . . . . 5  |-  .<_  =  ( le `  K )
3 lhpex1.a . . . . 5  |-  A  =  ( Atoms `  K )
4 lhpex1.h . . . . 5  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 30199 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )
61, 5syl 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )
7 simp31 991 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  .<_  W )
8 simp32 992 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  X )
9 simp1r 980 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  X  =  Y )
108, 9neeqtrd 2468 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  Y )
11 simp33 993 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  ->  p  =/=  Z )
128, 10, 113jca 1132 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  -> 
( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) )
137, 12jca 518 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  /\  p  e.  A  /\  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z ) )  -> 
( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
14133exp 1150 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( p  e.  A  ->  ( ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z
)  ->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) ) ) )
1514reximdvai 2653 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  ( E. p  e.  A  ( p  .<_  W  /\  p  =/=  X  /\  p  =/=  Z
)  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) ) )
166, 15mpd 14 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
17 simp11 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simp121 1087 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  X  e.  A )
19 simp131 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  X  .<_  W )
20 simp122 1088 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  Y  e.  A )
21 simp132 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  Y  .<_  W )
22 eqid 2283 . . . . . . . 8  |-  ( lt
`  K )  =  ( lt `  K
)
23 eqid 2283 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
242, 22, 23, 3, 4lhp2lt 30190 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  X  .<_  W )  /\  ( Y  e.  A  /\  Y  .<_  W ) )  -> 
( X ( join `  K ) Y ) ( lt `  K
) W )
2517, 18, 19, 20, 21, 24syl122anc 1191 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( X
( join `  K ) Y ) ( lt
`  K ) W )
26 simp11l 1066 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  K  e.  HL )
27 eqid 2283 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2827, 23, 3hlatjcl 29556 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  ->  ( X ( join `  K ) Y )  e.  ( Base `  K
) )
2926, 18, 20, 28syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( X
( join `  K ) Y )  e.  (
Base `  K )
)
30 simp11r 1067 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  W  e.  H )
3127, 4lhpbase 30187 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3230, 31syl 15 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  W  e.  ( Base `  K )
)
3327, 2, 22, 3hlrelat1 29589 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X ( join `  K
) Y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( X ( join `  K
) Y ) ( lt `  K ) W  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) ) )
3426, 29, 32, 33syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( ( X ( join `  K
) Y ) ( lt `  K ) W  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) ) )
3525, 34mpd 14 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  E. p  e.  A  ( -.  p  .<_  ( X (
join `  K ) Y )  /\  p  .<_  W ) )
36 simprrr 741 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  .<_  W )
3726adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  K  e.  HL )
38 hllat 29553 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
3937, 38syl 15 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  K  e.  Lat )
4027, 3atbase 29479 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
4140ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  e.  ( Base `  K )
)
4218adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  X  e.  A )
4327, 3atbase 29479 . . . . . . . . . . 11  |-  ( X  e.  A  ->  X  e.  ( Base `  K
) )
4442, 43syl 15 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  X  e.  ( Base `  K )
)
4520adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Y  e.  A )
4627, 3atbase 29479 . . . . . . . . . . 11  |-  ( Y  e.  A  ->  Y  e.  ( Base `  K
) )
4745, 46syl 15 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Y  e.  ( Base `  K )
)
48 simprrl 740 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  -.  p  .<_  ( X ( join `  K ) Y ) )
4927, 2, 23latnlej1l 14175 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  X )
5039, 41, 44, 47, 48, 49syl131anc 1195 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  X )
5127, 2, 23latnlej1r 14176 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Y )
5239, 41, 44, 47, 48, 51syl131anc 1195 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  Y )
53 simpl3 960 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  Z  .<_  ( X ( join `  K
) Y ) )
54 nbrne2 4041 . . . . . . . . . . 11  |-  ( ( Z  .<_  ( X
( join `  K ) Y )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  Z  =/=  p )
5554necomd 2529 . . . . . . . . . 10  |-  ( ( Z  .<_  ( X
( join `  K ) Y )  /\  -.  p  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Z )
5653, 48, 55syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  p  =/=  Z )
5750, 52, 563jca 1132 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  ( p  =/=  X  /\  p  =/= 
Y  /\  p  =/=  Z ) )
5836, 57jca 518 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  /\  ( p  e.  A  /\  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W ) ) )  ->  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
5958exp32 588 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( p  e.  A  ->  ( ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W )  -> 
( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) ) )
6059reximdvai 2653 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  ( E. p  e.  A  ( -.  p  .<_  ( X ( join `  K
) Y )  /\  p  .<_  W )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) )
6135, 60mpd 14 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  Z  .<_  ( X ( join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
62613expa 1151 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  /\  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
63 simp11l 1066 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  K  e.  HL )
64 simp121 1087 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  e.  A )
65 simp122 1088 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  Y  e.  A )
66 simp2 956 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  =/=  Y )
672, 23, 3hlsupr 29575 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  A  /\  Y  e.  A )  /\  X  =/=  Y
)  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/= 
Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
6863, 64, 65, 66, 67syl31anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) )
6963adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  HL )
7069, 38syl 15 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  K  e.  Lat )
7140ad2antrl 708 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  e.  ( Base `  K
) )
7264adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  A )
7365adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  A )
7469, 72, 73, 28syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  e.  ( Base `  K
) )
75 simp11r 1067 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  W  e.  H )
7675adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  H )
7776, 31syl 15 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  W  e.  ( Base `  K
) )
78 simprr3 1005 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  ( X ( join `  K ) Y ) )
79 simp131 1090 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  X  .<_  W )
8079adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  .<_  W )
81 simp132 1091 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  Y  .<_  W )
8281adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  .<_  W )
8372, 43syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  X  e.  ( Base `  K
) )
8473, 46syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  Y  e.  ( Base `  K
) )
8527, 2, 23latjle12 14168 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X  .<_  W  /\  Y  .<_  W )  <-> 
( X ( join `  K ) Y ) 
.<_  W ) )
8670, 83, 84, 77, 85syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
( X  .<_  W  /\  Y  .<_  W )  <->  ( X
( join `  K ) Y )  .<_  W ) )
8780, 82, 86mpbi2and 887 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  ( X ( join `  K
) Y )  .<_  W )
8827, 2, 70, 71, 74, 77, 78, 87lattrd 14164 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  .<_  W )
89 simprr1 1003 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  X )
90 simprr2 1004 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  Y )
91 simpl3 960 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  -.  Z  .<_  ( X (
join `  K ) Y ) )
92 nbrne2 4041 . . . . . . . . . 10  |-  ( ( p  .<_  ( X
( join `  K ) Y )  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  p  =/=  Z )
9378, 91, 92syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  p  =/=  Z )
9489, 90, 933jca 1132 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z ) )
9588, 94jca 518 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  /\  ( p  e.  A  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) ) ) )  ->  (
p  .<_  W  /\  (
p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z ) ) )
9695exp32 588 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  -> 
( p  e.  A  ->  ( ( p  =/= 
X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  ( p  .<_  W  /\  ( p  =/= 
X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) ) )
9796reximdvai 2653 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  -> 
( E. p  e.  A  ( p  =/= 
X  /\  p  =/=  Y  /\  p  .<_  ( X ( join `  K
) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) ) )
9868, 97mpd 14 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y  /\  -.  Z  .<_  ( X (
join `  K ) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
99983expa 1151 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  /\  -.  Z  .<_  ( X ( join `  K
) Y ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
10062, 99pm2.61dan 766 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  /\  X  =/=  Y )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z
) ) )
10116, 100pm2.61dane 2524 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/= 
Z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   ltcplt 14075   joincjn 14078   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  lhpexle3  30201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177
  Copyright terms: Public domain W3C validator