Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpj1 Unicode version

Theorem lhpj1 30136
Description: The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpj1.b  |-  B  =  ( Base `  K
)
lhpj1.l  |-  .<_  =  ( le `  K )
lhpj1.j  |-  .\/  =  ( join `  K )
lhpj1.u  |-  .1.  =  ( 1. `  K )
lhpj1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpj1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( W  .\/  X
)  =  .1.  )

Proof of Theorem lhpj1
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  K  e.  HL )
2 simpr 448 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  X  e.  B )
3 lhpj1.b . . . . . 6  |-  B  =  ( Base `  K
)
4 lhpj1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
53, 4lhpbase 30112 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
65ad2antlr 708 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  W  e.  B )
7 lhpj1.l . . . . 5  |-  .<_  =  ( le `  K )
8 eqid 2387 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
93, 7, 8hlrelat2 29517 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  W  e.  B )  ->  ( -.  X  .<_  W  <->  E. p  e.  ( Atoms `  K ) ( p  .<_  X  /\  -.  p  .<_  W ) ) )
101, 2, 6, 9syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( -.  X  .<_  W  <->  E. p  e.  ( Atoms `  K )
( p  .<_  X  /\  -.  p  .<_  W ) ) )
11 simp1l 981 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simp2 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  e.  ( Atoms `  K )
)
13 simp3r 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  -.  p  .<_  W )
14 lhpj1.j . . . . . . . 8  |-  .\/  =  ( join `  K )
15 lhpj1.u . . . . . . . 8  |-  .1.  =  ( 1. `  K )
167, 14, 15, 8, 4lhpjat1 30134 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  =  .1.  )
1711, 12, 13, 16syl12anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  =  .1.  )
18 simp3l 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  .<_  X )
19 simp1ll 1020 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  HL )
20 hllat 29478 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
2119, 20syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  Lat )
223, 8atbase 29404 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
23223ad2ant2 979 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  p  e.  B )
24 simp1r 982 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  X  e.  B )
2563ad2ant1 978 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  W  e.  B )
263, 7, 14latjlej2 14422 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  W  e.  B
) )  ->  (
p  .<_  X  ->  ( W  .\/  p )  .<_  ( W  .\/  X ) ) )
2721, 23, 24, 25, 26syl13anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( p  .<_  X  ->  ( W  .\/  p )  .<_  ( W 
.\/  X ) ) )
2818, 27mpd 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  p )  .<_  ( W 
.\/  X ) )
2917, 28eqbrtrrd 4175 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  .1.  .<_  ( W 
.\/  X ) )
30 hlop 29477 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
3119, 30syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  K  e.  OP )
323, 14latjcl 14406 . . . . . . 7  |-  ( ( K  e.  Lat  /\  W  e.  B  /\  X  e.  B )  ->  ( W  .\/  X
)  e.  B )
3321, 25, 24, 32syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  X )  e.  B
)
343, 7, 15op1le 29307 . . . . . 6  |-  ( ( K  e.  OP  /\  ( W  .\/  X )  e.  B )  -> 
(  .1.  .<_  ( W 
.\/  X )  <->  ( W  .\/  X )  =  .1.  ) )
3531, 33, 34syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  (  .1.  .<_  ( W  .\/  X )  <-> 
( W  .\/  X
)  =  .1.  )
)
3629, 35mpbid 202 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B )  /\  p  e.  ( Atoms `  K )  /\  ( p  .<_  X  /\  -.  p  .<_  W ) )  ->  ( W  .\/  X )  =  .1.  )
3736rexlimdv3a 2775 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( E. p  e.  ( Atoms `  K ) ( p 
.<_  X  /\  -.  p  .<_  W )  ->  ( W  .\/  X )  =  .1.  ) )
3810, 37sylbid 207 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B
)  ->  ( -.  X  .<_  W  ->  ( W  .\/  X )  =  .1.  ) )
3938impr 603 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( W  .\/  X
)  =  .1.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   1.cp1 14394   Latclat 14401   OPcops 29287   Atomscatm 29378   HLchlt 29465   LHypclh 30098
This theorem is referenced by:  lhpmcvr  30137  cdleme30a  30492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-lhyp 30102
  Copyright terms: Public domain W3C validator