Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmat Structured version   Unicode version

Theorem lhpmat 30827
Description: An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
lhpmat.l  |-  .<_  =  ( le `  K )
lhpmat.m  |-  ./\  =  ( meet `  K )
lhpmat.z  |-  .0.  =  ( 0. `  K )
lhpmat.a  |-  A  =  ( Atoms `  K )
lhpmat.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpmat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  .0.  )

Proof of Theorem lhpmat
StepHypRef Expression
1 simprr 734 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
2 hlatl 30158 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
32ad2antrr 707 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  AtLat )
4 simprl 733 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
5 eqid 2436 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
6 lhpmat.h . . . . 5  |-  H  =  ( LHyp `  K
)
75, 6lhpbase 30795 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
87ad2antlr 708 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K ) )
9 lhpmat.l . . . 4  |-  .<_  =  ( le `  K )
10 lhpmat.m . . . 4  |-  ./\  =  ( meet `  K )
11 lhpmat.z . . . 4  |-  .0.  =  ( 0. `  K )
12 lhpmat.a . . . 4  |-  A  =  ( Atoms `  K )
135, 9, 10, 11, 12atnle 30115 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  W  e.  ( Base `  K
) )  ->  ( -.  P  .<_  W  <->  ( P  ./\ 
W )  =  .0.  ) )
143, 4, 8, 13syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( -.  P  .<_  W  <-> 
( P  ./\  W
)  =  .0.  )
)
151, 14mpbid 202 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   Basecbs 13469   lecple 13536   meetcmee 14402   0.cp0 14466   Atomscatm 30061   AtLatcal 30062   HLchlt 30148   LHypclh 30781
This theorem is referenced by:  lhpmatb  30828  lhp2at0  30829  lhpelim  30834  lhple  30839  idltrn  30947  trl0  30967  cdleme0e  31014  cdleme2  31025  cdleme7c  31042  cdleme22d  31140  cdlemefrs29pre00  31192  cdlemefrs29bpre0  31193  cdlemefrs29cpre1  31195  cdleme32fva  31234  cdleme35d  31249  cdleme42ke  31282  cdlemeg46frv  31322  cdleme50trn3  31350  cdlemg2fv2  31397  cdlemg8a  31424  cdlemg10bALTN  31433  cdlemh2  31613  cdlemk9  31636  cdlemk9bN  31637  dia2dimlem1  31862  dihvalcqat  32037  dihjatc1  32109
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-glb 14432  df-meet 14434  df-p0 14468  df-lat 14475  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-lhyp 30785
  Copyright terms: Public domain W3C validator