Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr5N Unicode version

Theorem lhpmcvr5N 30216
Description: Specialization of lhpmcvr2 30213. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b  |-  B  =  ( Base `  K
)
lhpmcvr2.l  |-  .<_  =  ( le `  K )
lhpmcvr2.j  |-  .\/  =  ( join `  K )
lhpmcvr2.m  |-  ./\  =  ( meet `  K )
lhpmcvr2.a  |-  A  =  ( Atoms `  K )
lhpmcvr2.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpmcvr5N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y ) 
.<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    ./\ , p    X, p    W, p    H, p    Y, p
Allowed substitution hint:    .\/ ( p)

Proof of Theorem lhpmcvr5N
StepHypRef Expression
1 lhpmcvr2.b . . . 4  |-  B  =  ( Base `  K
)
2 lhpmcvr2.l . . . 4  |-  .<_  =  ( le `  K )
3 lhpmcvr2.j . . . 4  |-  .\/  =  ( join `  K )
4 lhpmcvr2.m . . . 4  |-  ./\  =  ( meet `  K )
5 lhpmcvr2.a . . . 4  |-  A  =  ( Atoms `  K )
6 lhpmcvr2.h . . . 4  |-  H  =  ( LHyp `  K
)
71, 2, 3, 4, 5, 6lhpmcvr2 30213 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )
873adant3 975 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y ) 
.<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )
9 simp3l 983 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  -.  p  .<_  W )
10 simp11 985 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
11 simp12 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
12 simp2 956 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  p  e.  A )
1312, 9jca 518 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( p  e.  A  /\  -.  p  .<_  W ) )
14 simp13l 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  Y  e.  B )
15 simp13r 1071 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
Y )  .<_  W )
16 simp11l 1066 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  HL )
17 hllat 29553 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  K  e.  Lat )
191, 5atbase 29479 . . . . . . . . 9  |-  ( p  e.  A  ->  p  e.  B )
20193ad2ant2 977 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  p  e.  B )
21 simp12l 1068 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  X  e.  B )
22 simp11r 1067 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  H )
231, 6lhpbase 30187 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  B )
2422, 23syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  W  e.  B )
251, 4latmcl 14157 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
2618, 21, 24, 25syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( X  ./\ 
W )  e.  B
)
271, 2, 3latlej1 14166 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  ( X  ./\  W )  e.  B )  ->  p  .<_  ( p  .\/  ( X  ./\  W ) ) )
2818, 20, 26, 27syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  p  .<_  ( p  .\/  ( X 
./\  W ) ) )
29 simp3r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( p  .\/  ( X  ./\  W
) )  =  X )
3028, 29breqtrd 4047 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  p  .<_  X )
311, 2, 3, 4, 5, 6lhpmcvr4N 30215 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  e.  B  /\  -.  X  .<_  W )  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  /\  ( Y  e.  B  /\  ( X  ./\  Y )  .<_  W  /\  p  .<_  X ) )  ->  -.  p  .<_  Y )
3210, 11, 13, 14, 15, 30, 31syl123anc 1199 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  -.  p  .<_  Y )
339, 32, 293jca 1132 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A  /\  ( -.  p  .<_  W  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
W ) )  =  X ) )
34333expia 1153 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X 
./\  Y )  .<_  W ) )  /\  p  e.  A )  ->  ( ( -.  p  .<_  W  /\  ( p 
.\/  ( X  ./\  W ) )  =  X )  ->  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
W ) )  =  X ) ) )
3534reximdva 2655 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y ) 
.<_  W ) )  -> 
( E. p  e.  A  ( -.  p  .<_  W  /\  ( p 
.\/  ( X  ./\  W ) )  =  X )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
W ) )  =  X ) ) )
368, 35mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y ) 
.<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  ( p  .\/  ( X  ./\  W ) )  =  X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  lhpmcvr6N  30217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177
  Copyright terms: Public domain W3C validator