Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel2 Structured version   Unicode version

Theorem lhpocnel2 30878
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
lhpocnel2.l  |-  .<_  =  ( le `  K )
lhpocnel2.a  |-  A  =  ( Atoms `  K )
lhpocnel2.h  |-  H  =  ( LHyp `  K
)
lhpocnel2.p  |-  P  =  ( ( oc `  K ) `  W
)
Assertion
Ref Expression
lhpocnel2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )

Proof of Theorem lhpocnel2
StepHypRef Expression
1 lhpocnel2.l . . 3  |-  .<_  =  ( le `  K )
2 eqid 2438 . . 3  |-  ( oc
`  K )  =  ( oc `  K
)
3 lhpocnel2.a . . 3  |-  A  =  ( Atoms `  K )
4 lhpocnel2.h . . 3  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 30877 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
6 lhpocnel2.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
76eleq1i 2501 . . 3  |-  ( P  e.  A  <->  ( ( oc `  K ) `  W )  e.  A
)
86breq1i 4221 . . . 4  |-  ( P 
.<_  W  <->  ( ( oc
`  K ) `  W )  .<_  W )
98notbii 289 . . 3  |-  ( -.  P  .<_  W  <->  -.  (
( oc `  K
) `  W )  .<_  W )
107, 9anbi12i 680 . 2  |-  ( ( P  e.  A  /\  -.  P  .<_  W )  <-> 
( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
115, 10sylibr 205 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   class class class wbr 4214   ` cfv 5456   lecple 13538   occoc 13539   Atomscatm 30123   HLchlt 30210   LHypclh 30843
This theorem is referenced by:  cdlemk56w  31832  diclspsn  32054  cdlemn3  32057  cdlemn4  32058  cdlemn4a  32059  cdlemn6  32062  cdlemn8  32064  cdlemn9  32065  cdlemn11a  32067  dihordlem7b  32075  dihopelvalcpre  32108  dihmeetlem1N  32150  dihglblem5apreN  32151  dihglbcpreN  32160  dihmeetlem4preN  32166  dihmeetlem13N  32179  dih1dimatlem0  32188  dih1dimatlem  32189  dihpN  32196  dihatexv  32198  dihjatcclem3  32280  dihjatcclem4  32281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-lhyp 30847
  Copyright terms: Public domain W3C validator