Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel2 Unicode version

Theorem lhpocnel2 30830
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
lhpocnel2.l  |-  .<_  =  ( le `  K )
lhpocnel2.a  |-  A  =  ( Atoms `  K )
lhpocnel2.h  |-  H  =  ( LHyp `  K
)
lhpocnel2.p  |-  P  =  ( ( oc `  K ) `  W
)
Assertion
Ref Expression
lhpocnel2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )

Proof of Theorem lhpocnel2
StepHypRef Expression
1 lhpocnel2.l . . 3  |-  .<_  =  ( le `  K )
2 eqid 2296 . . 3  |-  ( oc
`  K )  =  ( oc `  K
)
3 lhpocnel2.a . . 3  |-  A  =  ( Atoms `  K )
4 lhpocnel2.h . . 3  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 30829 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
6 lhpocnel2.p . . . 4  |-  P  =  ( ( oc `  K ) `  W
)
76eleq1i 2359 . . 3  |-  ( P  e.  A  <->  ( ( oc `  K ) `  W )  e.  A
)
86breq1i 4046 . . . 4  |-  ( P 
.<_  W  <->  ( ( oc
`  K ) `  W )  .<_  W )
98notbii 287 . . 3  |-  ( -.  P  .<_  W  <->  -.  (
( oc `  K
) `  W )  .<_  W )
107, 9anbi12i 678 . 2  |-  ( ( P  e.  A  /\  -.  P  .<_  W )  <-> 
( ( ( oc
`  K ) `  W )  e.  A  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
115, 10sylibr 203 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271   lecple 13231   occoc 13232   Atomscatm 30075   HLchlt 30162   LHypclh 30795
This theorem is referenced by:  cdlemk56w  31784  diclspsn  32006  cdlemn3  32009  cdlemn4  32010  cdlemn4a  32011  cdlemn6  32014  cdlemn8  32016  cdlemn9  32017  cdlemn11a  32019  dihordlem7b  32027  dihopelvalcpre  32060  dihmeetlem1N  32102  dihglblem5apreN  32103  dihglbcpreN  32112  dihmeetlem4preN  32118  dihmeetlem13N  32131  dih1dimatlem0  32140  dih1dimatlem  32141  dihpN  32148  dihatexv  32150  dihjatcclem3  32232  dihjatcclem4  32233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799
  Copyright terms: Public domain W3C validator