Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Unicode version

Theorem lhprelat3N 30899
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 30271. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b  |-  B  =  ( Base `  K
)
lhprelat3.l  |-  .<_  =  ( le `  K )
lhprelat3.s  |-  .<  =  ( lt `  K )
lhprelat3.m  |-  ./\  =  ( meet `  K )
lhprelat3.c  |-  C  =  (  <o  `  K )
lhprelat3.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhprelat3N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. w  e.  H  ( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y ) )
Distinct variable groups:    w, C    w, H    w, K    w,  .<_    w,  ./\    w, X    w, Y
Allowed substitution hints:    B( w)    .< ( w)

Proof of Theorem lhprelat3N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpl1 961 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  K  e.  HL )
2 hlop 30222 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
31, 2syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  K  e.  OP )
4 simpl3 963 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  Y  e.  B
)
5 lhprelat3.b . . . . 5  |-  B  =  ( Base `  K
)
6 eqid 2438 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
75, 6opoccl 30054 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
83, 4, 7syl2anc 644 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( ( oc
`  K ) `  Y )  e.  B
)
9 simpl2 962 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  e.  B
)
105, 6opoccl 30054 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
113, 9, 10syl2anc 644 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( ( oc
`  K ) `  X )  e.  B
)
12 simpr 449 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  .<  Y )
13 lhprelat3.s . . . . . 6  |-  .<  =  ( lt `  K )
145, 13, 6opltcon3b 30064 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( ( oc `  K ) `  Y )  .<  (
( oc `  K
) `  X )
) )
153, 9, 4, 14syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( X  .<  Y  <-> 
( ( oc `  K ) `  Y
)  .<  ( ( oc
`  K ) `  X ) ) )
1612, 15mpbid 203 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( ( oc
`  K ) `  Y )  .<  (
( oc `  K
) `  X )
)
17 lhprelat3.l . . . 4  |-  .<_  =  ( le `  K )
18 eqid 2438 . . . 4  |-  ( join `  K )  =  (
join `  K )
19 lhprelat3.c . . . 4  |-  C  =  (  <o  `  K )
20 eqid 2438 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
215, 17, 13, 18, 19, 20hlrelat3 30271 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  X
)  e.  B )  /\  ( ( oc
`  K ) `  Y )  .<  (
( oc `  K
) `  X )
)  ->  E. p  e.  ( Atoms `  K )
( ( ( oc
`  K ) `  Y ) C ( ( ( oc `  K ) `  Y
) ( join `  K
) p )  /\  ( ( ( oc
`  K ) `  Y ) ( join `  K ) p ) 
.<_  ( ( oc `  K ) `  X
) ) )
221, 8, 11, 16, 21syl31anc 1188 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  (
Atoms `  K ) ( ( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )
( join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) ) )
23 simpr 449 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  p  e.  ( Atoms `  K )
)
24 simpll1 997 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  K  e.  HL )
255, 20atbase 30149 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
2625adantl 454 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  p  e.  B )
27 lhprelat3.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
285, 6, 20, 27lhpoc2N 30874 . . . . . . . 8  |-  ( ( K  e.  HL  /\  p  e.  B )  ->  ( p  e.  (
Atoms `  K )  <->  ( ( oc `  K ) `  p )  e.  H
) )
2924, 26, 28syl2anc 644 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( p  e.  ( Atoms `  K )  <->  ( ( oc `  K
) `  p )  e.  H ) )
3023, 29mpbid 203 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( oc `  K ) `  p )  e.  H
)
3130adantr 453 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  /\  ( (
( oc `  K
) `  Y ) C ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) ) )  -> 
( ( oc `  K ) `  p
)  e.  H )
3224, 2syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  K  e.  OP )
33 hllat 30223 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
3424, 33syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  K  e.  Lat )
35 simpll3 999 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  Y  e.  B )
365, 6opoccl 30054 . . . . . . . . . . . 12  |-  ( ( K  e.  OP  /\  p  e.  B )  ->  ( ( oc `  K ) `  p
)  e.  B )
3732, 26, 36syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( oc `  K ) `  p )  e.  B
)
38 lhprelat3.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
395, 38latmcl 14482 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  ( ( oc `  K ) `  p
)  e.  B )  ->  ( Y  ./\  ( ( oc `  K ) `  p
) )  e.  B
)
4034, 35, 37, 39syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( Y  ./\  ( ( oc `  K ) `  p
) )  e.  B
)
415, 6, 19cvrcon3b 30137 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  ( Y  ./\  ( ( oc `  K ) `
 p ) )  e.  B  /\  Y  e.  B )  ->  (
( Y  ./\  (
( oc `  K
) `  p )
) C Y  <->  ( ( oc `  K ) `  Y ) C ( ( oc `  K
) `  ( Y  ./\  ( ( oc `  K ) `  p
) ) ) ) )
4232, 40, 35, 41syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( Y  ./\  ( ( oc
`  K ) `  p ) ) C Y  <->  ( ( oc
`  K ) `  Y ) C ( ( oc `  K
) `  ( Y  ./\  ( ( oc `  K ) `  p
) ) ) ) )
43 hlol 30221 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  OL )
4424, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  K  e.  OL )
455, 18, 38, 6oldmm3N 30079 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  Y  e.  B  /\  p  e.  B )  ->  ( ( oc `  K ) `  ( Y  ./\  ( ( oc
`  K ) `  p ) ) )  =  ( ( ( oc `  K ) `
 Y ) (
join `  K )
p ) )
4644, 35, 26, 45syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( oc `  K ) `  ( Y  ./\  ( ( oc `  K ) `
 p ) ) )  =  ( ( ( oc `  K
) `  Y )
( join `  K )
p ) )
4746breq2d 4226 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( (
( oc `  K
) `  Y ) C ( ( oc
`  K ) `  ( Y  ./\  ( ( oc `  K ) `
 p ) ) )  <->  ( ( oc
`  K ) `  Y ) C ( ( ( oc `  K ) `  Y
) ( join `  K
) p ) ) )
4842, 47bitr2d 247 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( (
( oc `  K
) `  Y ) C ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  <->  ( Y  ./\  ( ( oc `  K ) `  p
) ) C Y ) )
49 simpll2 998 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  X  e.  B )
505, 17, 6oplecon3b 30060 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B  /\  ( Y  ./\  ( ( oc `  K ) `
 p ) )  e.  B )  -> 
( X  .<_  ( Y 
./\  ( ( oc
`  K ) `  p ) )  <->  ( ( oc `  K ) `  ( Y  ./\  ( ( oc `  K ) `
 p ) ) )  .<_  ( ( oc `  K ) `  X ) ) )
5132, 49, 40, 50syl3anc 1185 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( X  .<_  ( Y  ./\  (
( oc `  K
) `  p )
)  <->  ( ( oc
`  K ) `  ( Y  ./\  ( ( oc `  K ) `
 p ) ) )  .<_  ( ( oc `  K ) `  X ) ) )
5246breq1d 4224 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( (
( oc `  K
) `  ( Y  ./\  ( ( oc `  K ) `  p
) ) )  .<_  ( ( oc `  K ) `  X
)  <->  ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  .<_  ( ( oc `  K ) `
 X ) ) )
5351, 52bitr2d 247 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
)  <->  X  .<_  ( Y 
./\  ( ( oc
`  K ) `  p ) ) ) )
5448, 53anbi12d 693 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  ->  ( (
( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )
( join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) )  <->  ( ( Y  ./\  ( ( oc
`  K ) `  p ) ) C Y  /\  X  .<_  ( Y  ./\  ( ( oc `  K ) `  p ) ) ) ) )
5554biimpa 472 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  /\  ( (
( oc `  K
) `  Y ) C ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) ) )  -> 
( ( Y  ./\  ( ( oc `  K ) `  p
) ) C Y  /\  X  .<_  ( Y 
./\  ( ( oc
`  K ) `  p ) ) ) )
5655ancomd 440 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  /\  ( (
( oc `  K
) `  Y ) C ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) ) )  -> 
( X  .<_  ( Y 
./\  ( ( oc
`  K ) `  p ) )  /\  ( Y  ./\  ( ( oc `  K ) `
 p ) ) C Y ) )
57 oveq2 6091 . . . . . . . 8  |-  ( w  =  ( ( oc
`  K ) `  p )  ->  ( Y  ./\  w )  =  ( Y  ./\  (
( oc `  K
) `  p )
) )
5857breq2d 4226 . . . . . . 7  |-  ( w  =  ( ( oc
`  K ) `  p )  ->  ( X  .<_  ( Y  ./\  w )  <->  X  .<_  ( Y  ./\  ( ( oc `  K ) `  p ) ) ) )
5957breq1d 4224 . . . . . . 7  |-  ( w  =  ( ( oc
`  K ) `  p )  ->  (
( Y  ./\  w
) C Y  <->  ( Y  ./\  ( ( oc `  K ) `  p
) ) C Y ) )
6058, 59anbi12d 693 . . . . . 6  |-  ( w  =  ( ( oc
`  K ) `  p )  ->  (
( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y )  <->  ( X  .<_  ( Y  ./\  (
( oc `  K
) `  p )
)  /\  ( Y  ./\  ( ( oc `  K ) `  p
) ) C Y ) ) )
6160rspcev 3054 . . . . 5  |-  ( ( ( ( oc `  K ) `  p
)  e.  H  /\  ( X  .<_  ( Y 
./\  ( ( oc
`  K ) `  p ) )  /\  ( Y  ./\  ( ( oc `  K ) `
 p ) ) C Y ) )  ->  E. w  e.  H  ( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y ) )
6231, 56, 61syl2anc 644 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  ( Atoms `  K )
)  /\  ( (
( oc `  K
) `  Y ) C ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  /\  (
( ( oc `  K ) `  Y
) ( join `  K
) p )  .<_  ( ( oc `  K ) `  X
) ) )  ->  E. w  e.  H  ( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y ) )
6362exp31 589 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( p  e.  ( Atoms `  K )  ->  ( ( ( ( oc `  K ) `
 Y ) C ( ( ( oc
`  K ) `  Y ) ( join `  K ) p )  /\  ( ( ( oc `  K ) `
 Y ) (
join `  K )
p )  .<_  ( ( oc `  K ) `
 X ) )  ->  E. w  e.  H  ( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y ) ) ) )
6463rexlimdv 2831 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  ( Atoms `  K )
( ( ( oc
`  K ) `  Y ) C ( ( ( oc `  K ) `  Y
) ( join `  K
) p )  /\  ( ( ( oc
`  K ) `  Y ) ( join `  K ) p ) 
.<_  ( ( oc `  K ) `  X
) )  ->  E. w  e.  H  ( X  .<_  ( Y  ./\  w
)  /\  ( Y  ./\  w ) C Y ) ) )
6522, 64mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. w  e.  H  ( X  .<_  ( Y 
./\  w )  /\  ( Y  ./\  w ) C Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   occoc 13539   ltcplt 14400   joincjn 14403   meetcmee 14404   Latclat 14476   OPcops 30032   OLcol 30034    <o ccvr 30122   Atomscatm 30123   HLchlt 30210   LHypclh 30843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-lhyp 30847
  Copyright terms: Public domain W3C validator