Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpset Unicode version

Theorem lhpset 30184
Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b  |-  B  =  ( Base `  K
)
lhpset.u  |-  .1.  =  ( 1. `  K )
lhpset.c  |-  C  =  (  <o  `  K )
lhpset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpset  |-  ( K  e.  A  ->  H  =  { w  e.  B  |  w C  .1.  }
)
Distinct variable groups:    w, B    w, C    w, K    w,  .1.
Allowed substitution hints:    A( w)    H( w)

Proof of Theorem lhpset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 lhpset.h . . 3  |-  H  =  ( LHyp `  K
)
3 fveq2 5525 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 lhpset.b . . . . . 6  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2333 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 eqidd 2284 . . . . . 6  |-  ( k  =  K  ->  w  =  w )
7 fveq2 5525 . . . . . . 7  |-  ( k  =  K  ->  (  <o  `  k )  =  (  <o  `  K )
)
8 lhpset.c . . . . . . 7  |-  C  =  (  <o  `  K )
97, 8syl6eqr 2333 . . . . . 6  |-  ( k  =  K  ->  (  <o  `  k )  =  C )
10 fveq2 5525 . . . . . . 7  |-  ( k  =  K  ->  ( 1. `  k )  =  ( 1. `  K
) )
11 lhpset.u . . . . . . 7  |-  .1.  =  ( 1. `  K )
1210, 11syl6eqr 2333 . . . . . 6  |-  ( k  =  K  ->  ( 1. `  k )  =  .1.  )
136, 9, 12breq123d 4037 . . . . 5  |-  ( k  =  K  ->  (
w (  <o  `  k
) ( 1. `  k )  <->  w C  .1.  ) )
145, 13rabeqbidv 2783 . . . 4  |-  ( k  =  K  ->  { w  e.  ( Base `  k
)  |  w ( 
<o  `  k ) ( 1. `  k ) }  =  { w  e.  B  |  w C  .1.  } )
15 df-lhyp 30177 . . . 4  |-  LHyp  =  ( k  e.  _V  |->  { w  e.  ( Base `  k )  |  w (  <o  `  k
) ( 1. `  k ) } )
16 fvex 5539 . . . . . 6  |-  ( Base `  K )  e.  _V
174, 16eqeltri 2353 . . . . 5  |-  B  e. 
_V
1817rabex 4165 . . . 4  |-  { w  e.  B  |  w C  .1.  }  e.  _V
1914, 15, 18fvmpt 5602 . . 3  |-  ( K  e.  _V  ->  ( LHyp `  K )  =  { w  e.  B  |  w C  .1.  }
)
202, 19syl5eq 2327 . 2  |-  ( K  e.  _V  ->  H  =  { w  e.  B  |  w C  .1.  }
)
211, 20syl 15 1  |-  ( K  e.  A  ->  H  =  { w  e.  B  |  w C  .1.  }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   class class class wbr 4023   ` cfv 5255   Basecbs 13148   1.cp1 14144    <o ccvr 29452   LHypclh 30173
This theorem is referenced by:  islhp  30185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-lhyp 30177
  Copyright terms: Public domain W3C validator