MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlrsppropd Unicode version

Theorem lidlrsppropd 16229
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
lidlrsppropd  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y   
x, W, y

Proof of Theorem lidlrsppropd
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 rlmbas 16195 . . . . 5  |-  ( Base `  K )  =  (
Base `  (ringLMod `  K
) )
31, 2syl6eq 2436 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
4 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
5 rlmbas 16195 . . . . 5  |-  ( Base `  L )  =  (
Base `  (ringLMod `  L
) )
64, 5syl6eq 2436 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
7 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
8 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
9 rlmplusg 16196 . . . . . 6  |-  ( +g  `  K )  =  ( +g  `  (ringLMod `  K
) )
109oveqi 6034 . . . . 5  |-  ( x ( +g  `  K
) y )  =  ( x ( +g  `  (ringLMod `  K )
) y )
11 rlmplusg 16196 . . . . . 6  |-  ( +g  `  L )  =  ( +g  `  (ringLMod `  L
) )
1211oveqi 6034 . . . . 5  |-  ( x ( +g  `  L
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y )
138, 10, 123eqtr3g 2443 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
14 rlmvsca 16201 . . . . . 6  |-  ( .r
`  K )  =  ( .s `  (ringLMod `  K ) )
1514oveqi 6034 . . . . 5  |-  ( x ( .r `  K
) y )  =  ( x ( .s
`  (ringLMod `  K )
) y )
16 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
1715, 16syl5eqelr 2473 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
18 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
19 rlmvsca 16201 . . . . . 6  |-  ( .r
`  L )  =  ( .s `  (ringLMod `  L ) )
2019oveqi 6034 . . . . 5  |-  ( x ( .r `  L
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y )
2118, 15, 203eqtr3g 2443 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
22 baseid 13439 . . . . . . 7  |-  Base  = Slot  ( Base `  ndx )
23 eqid 2388 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2422, 23strfvi 13435 . . . . . 6  |-  ( Base `  K )  =  (
Base `  (  _I  `  K ) )
25 rlmsca2 16200 . . . . . . 7  |-  (  _I 
`  K )  =  (Scalar `  (ringLMod `  K
) )
2625fveq2i 5672 . . . . . 6  |-  ( Base `  (  _I  `  K
) )  =  (
Base `  (Scalar `  (ringLMod `  K ) ) )
2724, 26eqtri 2408 . . . . 5  |-  ( Base `  K )  =  (
Base `  (Scalar `  (ringLMod `  K ) ) )
281, 27syl6eq 2436 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
29 eqid 2388 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
3022, 29strfvi 13435 . . . . . 6  |-  ( Base `  L )  =  (
Base `  (  _I  `  L ) )
31 rlmsca2 16200 . . . . . . 7  |-  (  _I 
`  L )  =  (Scalar `  (ringLMod `  L
) )
3231fveq2i 5672 . . . . . 6  |-  ( Base `  (  _I  `  L
) )  =  (
Base `  (Scalar `  (ringLMod `  L ) ) )
3330, 32eqtri 2408 . . . . 5  |-  ( Base `  L )  =  (
Base `  (Scalar `  (ringLMod `  L ) ) )
344, 33syl6eq 2436 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
353, 6, 7, 13, 17, 21, 28, 34lsspropd 16021 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
36 lidlval 16193 . . 3  |-  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) )
37 lidlval 16193 . . 3  |-  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) )
3835, 36, 373eqtr4g 2445 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
39 fvex 5683 . . . . 5  |-  (ringLMod `  K
)  e.  _V
4039a1i 11 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
41 fvex 5683 . . . . 5  |-  (ringLMod `  L
)  e.  _V
4241a1i 11 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
433, 6, 7, 13, 17, 21, 28, 34, 40, 42lsppropd 16022 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
44 rspval 16194 . . 3  |-  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) )
45 rspval 16194 . . 3  |-  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) )
4643, 44, 453eqtr4g 2445 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
4738, 46jca 519 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2900    C_ wss 3264    _I cid 4435   ` cfv 5395  (class class class)co 6021   ndxcnx 13394   Basecbs 13397   +g cplusg 13457   .rcmulr 13458  Scalarcsca 13460   .scvsca 13461   LSubSpclss 15936   LSpanclspn 15975  ringLModcrglmod 16169  LIdealclidl 16170  RSpancrsp 16171
This theorem is referenced by:  crngridl  16237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-sca 13473  df-vsca 13474  df-lss 15937  df-lsp 15976  df-sra 16172  df-rgmod 16173  df-lidl 16174  df-rsp 16175
  Copyright terms: Public domain W3C validator