MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcfval Structured version   Unicode version

Theorem limcfval 19759
Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j  |-  J  =  ( Kt  ( A  u.  { B } ) )
limcval.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
limcfval  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( F lim CC  B
)  =  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  /\  ( F lim CC  B )  C_  CC ) )
Distinct variable groups:    y, z, A    y, B, z    y, F, z    y, K, z   
y, J
Allowed substitution hint:    J( z)

Proof of Theorem limcfval
Dummy variables  f 
j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 19753 . . . 4  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } )
21a1i 11 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  -> lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } ) )
3 fvex 5742 . . . . . 6  |-  ( TopOpen ` fld )  e.  _V
43a1i 11 . . . . 5  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  -> 
( TopOpen ` fld )  e.  _V )
5 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  f  =  F )
65dmeqd 5072 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  f  =  dom  F )
7 simpll1 996 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  F : A
--> CC )
8 fdm 5595 . . . . . . . . . 10  |-  ( F : A --> CC  ->  dom 
F  =  A )
97, 8syl 16 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  F  =  A )
106, 9eqtrd 2468 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  dom  f  =  A )
11 simplrr 738 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  x  =  B )
1211sneqd 3827 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  { x }  =  { B } )
1310, 12uneq12d 3502 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( dom  f  u.  { x } )  =  ( A  u.  { B } ) )
1411eqeq2d 2447 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( z  =  x  <->  z  =  B ) )
155fveq1d 5730 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( f `  z )  =  ( F `  z ) )
1614, 15ifbieq2d 3759 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  if (
z  =  x ,  y ,  ( f `
 z ) )  =  if ( z  =  B ,  y ,  ( F `  z ) ) )
1713, 16mpteq12dv 4287 . . . . . 6  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( z  e.  ( dom  f  u. 
{ x } ) 
|->  if ( z  =  x ,  y ,  ( f `  z
) ) )  =  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) ) )
18 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  j  =  ( TopOpen ` fld ) )
19 limcval.k . . . . . . . . . . 11  |-  K  =  ( TopOpen ` fld )
2018, 19syl6eqr 2486 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  j  =  K )
2120, 13oveq12d 6099 . . . . . . . . 9  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( jt  ( dom  f  u.  { x } ) )  =  ( Kt  ( A  u.  { B } ) ) )
22 limcval.j . . . . . . . . 9  |-  J  =  ( Kt  ( A  u.  { B } ) )
2321, 22syl6eqr 2486 . . . . . . . 8  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( jt  ( dom  f  u.  { x } ) )  =  J )
2423, 20oveq12d 6099 . . . . . . 7  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
jt  ( dom  f  u. 
{ x } ) )  CnP  j )  =  ( J  CnP  K ) )
2524, 11fveq12d 5734 . . . . . 6  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
( jt  ( dom  f  u.  { x } ) )  CnP  j ) `
 x )  =  ( ( J  CnP  K ) `  B ) )
2617, 25eleq12d 2504 . . . . 5  |-  ( ( ( ( F : A
--> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  /\  j  =  ( TopOpen ` fld )
)  ->  ( (
z  e.  ( dom  f  u.  { x } )  |->  if ( z  =  x ,  y ,  ( f `
 z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `
 x )  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) ) )
274, 26sbcied 3197 . . . 4  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  -> 
( [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
)  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) ) )
2827abbidv 2550 . . 3  |-  ( ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  /\  ( f  =  F  /\  x  =  B ) )  ->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) }  =  {
y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K
) `  B ) } )
29 cnex 9071 . . . . 5  |-  CC  e.  _V
30 elpm2r 7034 . . . . 5  |-  ( ( ( CC  e.  _V  /\  CC  e.  _V )  /\  ( F : A --> CC  /\  A  C_  CC ) )  ->  F  e.  ( CC  ^pm  CC ) )
3129, 29, 30mpanl12 664 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  CC )  ->  F  e.  ( CC  ^pm 
CC ) )
32313adant3 977 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  F  e.  ( CC  ^pm  CC ) )
33 simp3 959 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  B  e.  CC )
34 eqid 2436 . . . . . 6  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )
3522, 19, 34limcvallem 19758 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B )  -> 
y  e.  CC ) )
3635abssdv 3417 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) } 
C_  CC )
3729ssex 4347 . . . 4  |-  ( { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K
) `  B ) }  C_  CC  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  e.  _V )
3836, 37syl 16 . . 3  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  e.  _V )
392, 28, 32, 33, 38ovmpt2d 6201 . 2  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  ( F lim CC  B )  =  { y  |  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  y ,  ( F `  z ) ) )  e.  ( ( J  CnP  K ) `  B ) } )
4039, 36eqsstrd 3382 . 2  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  ( F lim CC  B )  C_  CC )
4139, 40jca 519 1  |-  ( ( F : A --> CC  /\  A  C_  CC  /\  B  e.  CC )  ->  (
( F lim CC  B
)  =  { y  |  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B , 
y ,  ( F `
 z ) ) )  e.  ( ( J  CnP  K ) `
 B ) }  /\  ( F lim CC  B )  C_  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2422   _Vcvv 2956   [.wsbc 3161    u. cun 3318    C_ wss 3320   ifcif 3739   {csn 3814    e. cmpt 4266   dom cdm 4878   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083    ^pm cpm 7019   CCcc 8988   ↾t crest 13648   TopOpenctopn 13649  ℂfldccnfld 16703    CnP ccnp 17289   lim CC climc 19749
This theorem is referenced by:  ellimc  19760  limccl  19762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-fz 11044  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-rest 13650  df-topn 13651  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cnp 17292  df-xms 18350  df-ms 18351  df-limc 19753
  Copyright terms: Public domain W3C validator