MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcnlp Unicode version

Theorem limcnlp 19228
Description: If  B is not a limit point of the domain of the function  F, then every point is a limit of  F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f  |-  ( ph  ->  F : A --> CC )
limccl.a  |-  ( ph  ->  A  C_  CC )
limccl.b  |-  ( ph  ->  B  e.  CC )
ellimc2.k  |-  K  =  ( TopOpen ` fld )
limcnlp.n  |-  ( ph  ->  -.  B  e.  ( ( limPt `  K ) `  A ) )
Assertion
Ref Expression
limcnlp  |-  ( ph  ->  ( F lim CC  B
)  =  CC )

Proof of Theorem limcnlp
Dummy variables  x  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . 4  |-  ( ph  ->  F : A --> CC )
2 limccl.a . . . 4  |-  ( ph  ->  A  C_  CC )
3 limccl.b . . . 4  |-  ( ph  ->  B  e.  CC )
4 ellimc2.k . . . 4  |-  K  =  ( TopOpen ` fld )
51, 2, 3, 4ellimc2 19227 . . 3  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
( x  e.  CC  /\ 
A. u  e.  K  ( x  e.  u  ->  E. v  e.  K  ( B  e.  v  /\  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
64cnfldtop 18293 . . . . . . . . . 10  |-  K  e. 
Top
7 difss 3303 . . . . . . . . . . 11  |-  ( A 
\  { B }
)  C_  A
82adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  A  C_  CC )
97, 8syl5ss 3190 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( A 
\  { B }
)  C_  CC )
104cnfldtopon 18292 . . . . . . . . . . . 12  |-  K  e.  (TopOn `  CC )
1110toponunii 16670 . . . . . . . . . . 11  |-  CC  =  U. K
1211clscld 16784 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  ( A  \  { B } )  C_  CC )  ->  ( ( cls `  K ) `  ( A  \  { B }
) )  e.  (
Clsd `  K )
)
136, 9, 12sylancr 644 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( cls `  K ) `
 ( A  \  { B } ) )  e.  ( Clsd `  K
) )
1411cldopn 16768 . . . . . . . . 9  |-  ( ( ( cls `  K
) `  ( A  \  { B } ) )  e.  ( Clsd `  K )  ->  ( CC  \  ( ( cls `  K ) `  ( A  \  { B }
) ) )  e.  K )
1513, 14syl 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  e.  K )
16 limcnlp.n . . . . . . . . . . 11  |-  ( ph  ->  -.  B  e.  ( ( limPt `  K ) `  A ) )
1711islp 16872 . . . . . . . . . . . 12  |-  ( ( K  e.  Top  /\  A  C_  CC )  -> 
( B  e.  ( ( limPt `  K ) `  A )  <->  B  e.  ( ( cls `  K
) `  ( A  \  { B } ) ) ) )
186, 2, 17sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( B  e.  ( ( limPt `  K ) `  A )  <->  B  e.  ( ( cls `  K
) `  ( A  \  { B } ) ) ) )
1916, 18mtbid 291 . . . . . . . . . 10  |-  ( ph  ->  -.  B  e.  ( ( cls `  K
) `  ( A  \  { B } ) ) )
20 eldif 3162 . . . . . . . . . 10  |-  ( B  e.  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  <->  ( B  e.  CC  /\  -.  B  e.  ( ( cls `  K
) `  ( A  \  { B } ) ) ) )
213, 19, 20sylanbrc 645 . . . . . . . . 9  |-  ( ph  ->  B  e.  ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) ) )
2221adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) ) )
23 difin2 3430 . . . . . . . . . . . . 13  |-  ( ( A  \  { B } )  C_  CC  ->  ( ( A  \  { B } )  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  =  ( ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  i^i  ( A  \  { B }
) ) )
249, 23syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( A  \  { B } )  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  =  ( ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  i^i  ( A  \  { B }
) ) )
2511sscls 16793 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  ( A  \  { B } )  C_  CC )  ->  ( A  \  { B } )  C_  ( ( cls `  K
) `  ( A  \  { B } ) ) )
266, 9, 25sylancr 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  CC )  ->  ( A 
\  { B }
)  C_  ( ( cls `  K ) `  ( A  \  { B } ) ) )
27 ssdif0 3513 . . . . . . . . . . . . 13  |-  ( ( A  \  { B } )  C_  (
( cls `  K
) `  ( A  \  { B } ) )  <->  ( ( A 
\  { B }
)  \  ( ( cls `  K ) `  ( A  \  { B } ) ) )  =  (/) )
2826, 27sylib 188 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( A  \  { B } )  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  =  (/) )
2924, 28eqtr3d 2317 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  \  ( ( cls `  K ) `
 ( A  \  { B } ) ) )  i^i  ( A 
\  { B }
) )  =  (/) )
3029imaeq2d 5012 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( F
" ( ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  i^i  ( A  \  { B } ) ) )  =  ( F " (/) ) )
31 ima0 5030 . . . . . . . . . 10  |-  ( F
" (/) )  =  (/)
3230, 31syl6eq 2331 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  ( F
" ( ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  i^i  ( A  \  { B } ) ) )  =  (/) )
33 0ss 3483 . . . . . . . . . 10  |-  (/)  C_  u
3433a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  (/)  C_  u
)
3532, 34eqsstrd 3212 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( F
" ( ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  i^i  ( A  \  { B } ) ) ) 
C_  u )
36 eleq2 2344 . . . . . . . . . 10  |-  ( v  =  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  ->  ( B  e.  v  <->  B  e.  ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) ) ) )
37 ineq1 3363 . . . . . . . . . . . 12  |-  ( v  =  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  ->  (
v  i^i  ( A  \  { B } ) )  =  ( ( CC  \  ( ( cls `  K ) `
 ( A  \  { B } ) ) )  i^i  ( A 
\  { B }
) ) )
3837imaeq2d 5012 . . . . . . . . . . 11  |-  ( v  =  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  ->  ( F " ( v  i^i  ( A  \  { B } ) ) )  =  ( F "
( ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  i^i  ( A  \  { B }
) ) ) )
3938sseq1d 3205 . . . . . . . . . 10  |-  ( v  =  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  ->  (
( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u  <->  ( F " ( ( CC  \  ( ( cls `  K ) `
 ( A  \  { B } ) ) )  i^i  ( A 
\  { B }
) ) )  C_  u ) )
4036, 39anbi12d 691 . . . . . . . . 9  |-  ( v  =  ( CC  \ 
( ( cls `  K
) `  ( A  \  { B } ) ) )  ->  (
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u )  <->  ( B  e.  ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  /\  ( F " ( ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
4140rspcev 2884 . . . . . . . 8  |-  ( ( ( CC  \  (
( cls `  K
) `  ( A  \  { B } ) ) )  e.  K  /\  ( B  e.  ( CC  \  ( ( cls `  K ) `
 ( A  \  { B } ) ) )  /\  ( F
" ( ( CC 
\  ( ( cls `  K ) `  ( A  \  { B }
) ) )  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  E. v  e.  K  ( B  e.  v  /\  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) )
4215, 22, 35, 41syl12anc 1180 . . . . . . 7  |-  ( (
ph  /\  x  e.  CC )  ->  E. v  e.  K  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )
4342a1d 22 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( x  e.  u  ->  E. v  e.  K  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
4443ralrimivw 2627 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  A. u  e.  K  ( x  e.  u  ->  E. v  e.  K  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
4544ex 423 . . . 4  |-  ( ph  ->  ( x  e.  CC  ->  A. u  e.  K  ( x  e.  u  ->  E. v  e.  K  ( B  e.  v  /\  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) )
4645pm4.71d 615 . . 3  |-  ( ph  ->  ( x  e.  CC  <->  ( x  e.  CC  /\  A. u  e.  K  ( x  e.  u  ->  E. v  e.  K  ( B  e.  v  /\  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
475, 46bitr4d 247 . 2  |-  ( ph  ->  ( x  e.  ( F lim CC  B )  <-> 
x  e.  CC ) )
4847eqrdv 2281 1  |-  ( ph  ->  ( F lim CC  B
)  =  CC )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   TopOpenctopn 13326  ℂfldccnfld 16377   Topctop 16631   Clsdccld 16753   clsccl 16755   limPtclp 16866   lim CC climc 19212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cls 16758  df-lp 16868  df-cnp 16958  df-xms 17885  df-ms 17886  df-limc 19216
  Copyright terms: Public domain W3C validator