Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Unicode version

Theorem limomss 4842
 Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss

Proof of Theorem limomss
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 4632 . 2
2 ordeleqon 4761 . . 3
3 elom 4840 . . . . . . . . . 10
43simprbi 451 . . . . . . . . 9
5 limeq 4585 . . . . . . . . . . 11
6 eleq2 2496 . . . . . . . . . . 11
75, 6imbi12d 312 . . . . . . . . . 10
87spcgv 3028 . . . . . . . . 9
94, 8syl5 30 . . . . . . . 8
109com23 74 . . . . . . 7
1110imp 419 . . . . . 6
1211ssrdv 3346 . . . . 5
1312ex 424 . . . 4
14 omsson 4841 . . . . . 6
15 sseq2 3362 . . . . . 6
1614, 15mpbiri 225 . . . . 5
1716a1d 23 . . . 4
1813, 17jaoi 369 . . 3
192, 18sylbi 188 . 2
201, 19mpcom 34 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 358   wa 359  wal 1549   wceq 1652   wcel 1725   wss 3312   word 4572  con0 4573   wlim 4574  com 4837 This theorem is referenced by:  limom  4852  rdg0  6671  frfnom  6684  frsuc  6686  r1fin  7691  rankdmr1  7719  rankeq0b  7778  cardlim  7851  ackbij2  8115  cfom  8136  wunom  8587  inar1  8642 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838
 Copyright terms: Public domain W3C validator