MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni3 Unicode version

Theorem limuni3 4643
Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
limuni3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Lim  U. A )
Distinct variable group:    x, A

Proof of Theorem limuni3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limeq 4404 . . . . . . 7  |-  ( x  =  z  ->  ( Lim  x  <->  Lim  z ) )
21rspcv 2880 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  Lim  z ) )
3 vex 2791 . . . . . . 7  |-  z  e. 
_V
4 limelon 4455 . . . . . . 7  |-  ( ( z  e.  _V  /\  Lim  z )  ->  z  e.  On )
53, 4mpan 651 . . . . . 6  |-  ( Lim  z  ->  z  e.  On )
62, 5syl6com 31 . . . . 5  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  z  e.  On ) )
76ssrdv 3185 . . . 4  |-  ( A. x  e.  A  Lim  x  ->  A  C_  On )
8 ssorduni 4577 . . . 4  |-  ( A 
C_  On  ->  Ord  U. A )
97, 8syl 15 . . 3  |-  ( A. x  e.  A  Lim  x  ->  Ord  U. A )
109adantl 452 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Ord  U. A )
11 n0 3464 . . . 4  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
12 0ellim 4454 . . . . . . 7  |-  ( Lim  z  ->  (/)  e.  z )
13 elunii 3832 . . . . . . . 8  |-  ( (
(/)  e.  z  /\  z  e.  A )  -> 
(/)  e.  U. A )
1413expcom 424 . . . . . . 7  |-  ( z  e.  A  ->  ( (/) 
e.  z  ->  (/)  e.  U. A ) )
1512, 14syl5 28 . . . . . 6  |-  ( z  e.  A  ->  ( Lim  z  ->  (/)  e.  U. A ) )
162, 15syld 40 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  (/)  e.  U. A ) )
1716exlimiv 1666 . . . 4  |-  ( E. z  z  e.  A  ->  ( A. x  e.  A  Lim  x  ->  (/) 
e.  U. A ) )
1811, 17sylbi 187 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  Lim  x  ->  (/)  e.  U. A
) )
1918imp 418 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  (/)  e.  U. A )
20 eluni2 3831 . . . . 5  |-  ( y  e.  U. A  <->  E. z  e.  A  y  e.  z )
211rspccv 2881 . . . . . . 7  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  Lim  z ) )
22 limsuc 4640 . . . . . . . . . . 11  |-  ( Lim  z  ->  ( y  e.  z  <->  suc  y  e.  z ) )
2322anbi1d 685 . . . . . . . . . 10  |-  ( Lim  z  ->  ( (
y  e.  z  /\  z  e.  A )  <->  ( suc  y  e.  z  /\  z  e.  A
) ) )
24 elunii 3832 . . . . . . . . . 10  |-  ( ( suc  y  e.  z  /\  z  e.  A
)  ->  suc  y  e. 
U. A )
2523, 24syl6bi 219 . . . . . . . . 9  |-  ( Lim  z  ->  ( (
y  e.  z  /\  z  e.  A )  ->  suc  y  e.  U. A ) )
2625exp3a 425 . . . . . . . 8  |-  ( Lim  z  ->  ( y  e.  z  ->  ( z  e.  A  ->  suc  y  e.  U. A ) ) )
2726com3r 73 . . . . . . 7  |-  ( z  e.  A  ->  ( Lim  z  ->  ( y  e.  z  ->  suc  y  e.  U. A ) ) )
2821, 27sylcom 25 . . . . . 6  |-  ( A. x  e.  A  Lim  x  ->  ( z  e.  A  ->  ( y  e.  z  ->  suc  y  e.  U. A ) ) )
2928rexlimdv 2666 . . . . 5  |-  ( A. x  e.  A  Lim  x  ->  ( E. z  e.  A  y  e.  z  ->  suc  y  e.  U. A ) )
3020, 29syl5bi 208 . . . 4  |-  ( A. x  e.  A  Lim  x  ->  ( y  e. 
U. A  ->  suc  y  e.  U. A ) )
3130ralrimiv 2625 . . 3  |-  ( A. x  e.  A  Lim  x  ->  A. y  e.  U. A  suc  y  e.  U. A )
3231adantl 452 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  A. y  e.  U. A  suc  y  e.  U. A )
33 dflim4 4639 . 2  |-  ( Lim  U. A  <->  ( Ord  U. A  /\  (/)  e.  U. A  /\  A. y  e.  U. A  suc  y  e.  U. A ) )
3410, 19, 32, 33syl3anbrc 1136 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  Lim  x )  ->  Lim  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   U.cuni 3827   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398
  Copyright terms: Public domain W3C validator