MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lincmb01cmp Unicode version

Theorem lincmb01cmp 10777
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 0re 8838 . . . . . . . . 9  |-  0  e.  RR
2 1re 8837 . . . . . . . . 9  |-  1  e.  RR
31, 2elicc2i 10716 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
43simp1bi 970 . . . . . . 7  |-  ( T  e.  ( 0 [,] 1 )  ->  T  e.  RR )
54adantl 452 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  RR )
65recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  CC )
7 simpl2 959 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  RR )
87recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  B  e.  CC )
96, 8mulcld 8855 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  B )  e.  CC )
10 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  RR )
1110recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  A  e.  CC )
126, 11mulcld 8855 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  A )  e.  CC )
139, 12, 11subadd23d 9179 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( T  x.  B )  -  ( T  x.  A ) )  +  A )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
146, 8, 11subdid 9235 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  =  ( ( T  x.  B
)  -  ( T  x.  A ) ) )
1514oveq1d 5873 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( T  x.  B )  -  ( T  x.  A )
)  +  A ) )
16 resubcl 9111 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
172, 5, 16sylancr 644 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  -  T )  e.  RR )
1817, 10remulcld 8863 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  RR )
1918recnd 8861 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  e.  CC )
2019, 9addcomd 9014 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( ( 1  -  T )  x.  A ) ) )
21 ax-1cn 8795 . . . . . . . 8  |-  1  e.  CC
2221a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  CC )
2322, 6, 11subdird 9236 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( ( 1  x.  A
)  -  ( T  x.  A ) ) )
2411mulid2d 8853 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  A )  =  A )
2524oveq1d 5873 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  x.  A )  -  ( T  x.  A
) )  =  ( A  -  ( T  x.  A ) ) )
2623, 25eqtrd 2315 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  T )  x.  A )  =  ( A  -  ( T  x.  A ) ) )
2726oveq2d 5874 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  B )  +  ( ( 1  -  T )  x.  A
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
2820, 27eqtrd 2315 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  =  ( ( T  x.  B
)  +  ( A  -  ( T  x.  A ) ) ) )
2913, 15, 283eqtr4d 2325 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  =  ( ( ( 1  -  T )  x.  A
)  +  ( T  x.  B ) ) )
30 simpr 447 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
311a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  0  e.  RR )
322a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  1  e.  RR )
33 difrp 10387 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
3433biimp3a 1281 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
3534adantr 451 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR+ )
36 eqid 2283 . . . . . . . 8  |-  ( 0  x.  ( B  -  A ) )  =  ( 0  x.  ( B  -  A )
)
37 eqid 2283 . . . . . . . 8  |-  ( 1  x.  ( B  -  A ) )  =  ( 1  x.  ( B  -  A )
)
3836, 37iccdil 10773 . . . . . . 7  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( T  e.  RR  /\  ( B  -  A )  e.  RR+ ) )  ->  ( T  e.  ( 0 [,] 1 )  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
3931, 32, 5, 35, 38syl22anc 1183 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  e.  ( 0 [,] 1
)  <->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) ) )
4030, 39mpbid 201 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( ( 0  x.  ( B  -  A )
) [,] ( 1  x.  ( B  -  A ) ) ) )
417, 10resubcld 9211 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  RR )
4241recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( B  -  A )  e.  CC )
4342mul02d 9010 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( B  -  A
) )  =  0 )
4442mulid2d 8853 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  ( B  -  A
) )  =  ( B  -  A ) )
4543, 44oveq12d 5876 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  x.  ( B  -  A ) ) [,] ( 1  x.  ( B  -  A )
) )  =  ( 0 [,] ( B  -  A ) ) )
4640, 45eleqtrd 2359 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) ) )
475, 41remulcld 8863 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( T  x.  ( B  -  A
) )  e.  RR )
48 eqid 2283 . . . . . 6  |-  ( 0  +  A )  =  ( 0  +  A
)
49 eqid 2283 . . . . . 6  |-  ( ( B  -  A )  +  A )  =  ( ( B  -  A )  +  A
)
5048, 49iccshftr 10769 . . . . 5  |-  ( ( ( 0  e.  RR  /\  ( B  -  A
)  e.  RR )  /\  ( ( T  x.  ( B  -  A ) )  e.  RR  /\  A  e.  RR ) )  -> 
( ( T  x.  ( B  -  A
) )  e.  ( 0 [,] ( B  -  A ) )  <-> 
( ( T  x.  ( B  -  A
) )  +  A
)  e.  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A ) ) ) )
5131, 41, 47, 10, 50syl22anc 1183 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  e.  ( 0 [,] ( B  -  A )
)  <->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) ) )
5246, 51mpbid 201 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( ( 0  +  A
) [,] ( ( B  -  A )  +  A ) ) )
5311addid2d 9013 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( 0  +  A )  =  A )
548, 11npcand 9161 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( B  -  A )  +  A )  =  B )
5553, 54oveq12d 5876 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( 0  +  A ) [,] ( ( B  -  A )  +  A
) )  =  ( A [,] B ) )
5652, 55eleqtrd 2359 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( T  x.  ( B  -  A ) )  +  A )  e.  ( A [,] B ) )
5729, 56eqeltrrd 2358 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  T )  x.  A )  +  ( T  x.  B
) )  e.  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   [,]cicc 10659
This theorem is referenced by:  iccf1o  10778  icccvx  18448  efcvx  19825  logccv  20010  cvxcl  20279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-rp 10355  df-icc 10663
  Copyright terms: Public domain W3C validator