Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindfmm Structured version   Unicode version

Theorem lindfmm 27274
Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lindfmm.b  |-  B  =  ( Base `  S
)
lindfmm.c  |-  C  =  ( Base `  T
)
Assertion
Ref Expression
lindfmm  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( F LIndF  S  <->  ( G  o.  F ) LIndF  T ) )

Proof of Theorem lindfmm
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 27255 . . . . 5  |-  Rel LIndF
21brrelexi 4918 . . . 4  |-  ( F LIndF 
S  ->  F  e.  _V )
3 simp3 959 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  ->  F : I --> B )
4 dmfex 5626 . . . 4  |-  ( ( F  e.  _V  /\  F : I --> B )  ->  I  e.  _V )
52, 3, 4syl2anr 465 . . 3  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F : I --> B )  /\  F LIndF  S )  ->  I  e.  _V )
65ex 424 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( F LIndF  S  ->  I  e.  _V ) )
71brrelexi 4918 . . . 4  |-  ( ( G  o.  F ) LIndF 
T  ->  ( G  o.  F )  e.  _V )
8 f1f 5639 . . . . . 6  |-  ( G : B -1-1-> C  ->  G : B --> C )
9 fco 5600 . . . . . 6  |-  ( ( G : B --> C  /\  F : I --> B )  ->  ( G  o.  F ) : I --> C )
108, 9sylan 458 . . . . 5  |-  ( ( G : B -1-1-> C  /\  F : I --> B )  ->  ( G  o.  F ) : I --> C )
11103adant1 975 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( G  o.  F
) : I --> C )
12 dmfex 5626 . . . 4  |-  ( ( ( G  o.  F
)  e.  _V  /\  ( G  o.  F
) : I --> C )  ->  I  e.  _V )
137, 11, 12syl2anr 465 . . 3  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F : I --> B )  /\  ( G  o.  F ) LIndF  T )  ->  I  e.  _V )
1413ex 424 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( ( G  o.  F ) LIndF  T  ->  I  e.  _V ) )
15 eldifi 3469 . . . . . . . . 9  |-  ( k  e.  ( ( Base `  (Scalar `  S )
)  \  { ( 0g `  (Scalar `  S
) ) } )  ->  k  e.  (
Base `  (Scalar `  S
) ) )
16 simpllr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  G : B -1-1-> C )
17 lmhmlmod1 16109 . . . . . . . . . . . . . . 15  |-  ( G  e.  ( S LMHom  T
)  ->  S  e.  LMod )
1817ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  S  e.  LMod )
19 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  k  e.  ( Base `  (Scalar `  S
) ) )
20 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  ->  F : I --> B )
21 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S )
) )  ->  x  e.  I )
22 ffvelrn 5868 . . . . . . . . . . . . . . 15  |-  ( ( F : I --> B  /\  x  e.  I )  ->  ( F `  x
)  e.  B )
2320, 21, 22syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( F `  x )  e.  B
)
24 lindfmm.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  S
)
25 eqid 2436 . . . . . . . . . . . . . . 15  |-  (Scalar `  S )  =  (Scalar `  S )
26 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( .s
`  S )  =  ( .s `  S
)
27 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
2824, 25, 26, 27lmodvscl 15967 . . . . . . . . . . . . . 14  |-  ( ( S  e.  LMod  /\  k  e.  ( Base `  (Scalar `  S ) )  /\  ( F `  x )  e.  B )  -> 
( k ( .s
`  S ) ( F `  x ) )  e.  B )
2918, 19, 23, 28syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( k
( .s `  S
) ( F `  x ) )  e.  B )
30 imassrn 5216 . . . . . . . . . . . . . . . 16  |-  ( F
" ( I  \  { x } ) )  C_  ran  F
31 frn 5597 . . . . . . . . . . . . . . . . 17  |-  ( F : I --> B  ->  ran  F  C_  B )
3231adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( F : I --> B  /\  I  e.  _V )  ->  ran  F  C_  B
)
3330, 32syl5ss 3359 . . . . . . . . . . . . . . 15  |-  ( ( F : I --> B  /\  I  e.  _V )  ->  ( F " (
I  \  { x } ) )  C_  B )
3433ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( F " ( I  \  {
x } ) ) 
C_  B )
35 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( LSpan `  S )  =  (
LSpan `  S )
3624, 35lspssv 16059 . . . . . . . . . . . . . 14  |-  ( ( S  e.  LMod  /\  ( F " ( I  \  { x } ) )  C_  B )  ->  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) )  C_  B )
3718, 34, 36syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( ( LSpan `  S ) `  ( F " ( I 
\  { x }
) ) )  C_  B )
38 f1elima 6009 . . . . . . . . . . . . 13  |-  ( ( G : B -1-1-> C  /\  ( k ( .s
`  S ) ( F `  x ) )  e.  B  /\  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) )  C_  B )  ->  ( ( G `  ( k ( .s
`  S ) ( F `  x ) ) )  e.  ( G " ( (
LSpan `  S ) `  ( F " ( I 
\  { x }
) ) ) )  <-> 
( k ( .s
`  S ) ( F `  x ) )  e.  ( (
LSpan `  S ) `  ( F " ( I 
\  { x }
) ) ) ) )
3916, 29, 37, 38syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( ( G `  ( k
( .s `  S
) ( F `  x ) ) )  e.  ( G "
( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) ) )  <->  ( k
( .s `  S
) ( F `  x ) )  e.  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) ) ) )
40 simplll 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  G  e.  ( S LMHom  T ) )
41 eqid 2436 . . . . . . . . . . . . . . . 16  |-  ( .s
`  T )  =  ( .s `  T
)
4225, 27, 24, 26, 41lmhmlin 16111 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  ( S LMHom 
T )  /\  k  e.  ( Base `  (Scalar `  S ) )  /\  ( F `  x )  e.  B )  -> 
( G `  (
k ( .s `  S ) ( F `
 x ) ) )  =  ( k ( .s `  T
) ( G `  ( F `  x ) ) ) )
4340, 19, 23, 42syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( G `  ( k ( .s
`  S ) ( F `  x ) ) )  =  ( k ( .s `  T ) ( G `
 ( F `  x ) ) ) )
44 ffn 5591 . . . . . . . . . . . . . . . . 17  |-  ( F : I --> B  ->  F  Fn  I )
4544ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  ->  F  Fn  I )
46 fvco2 5798 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  I  /\  x  e.  I )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
4745, 21, 46syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( ( G  o.  F ) `  x )  =  ( G `  ( F `
 x ) ) )
4847oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( k
( .s `  T
) ( ( G  o.  F ) `  x ) )  =  ( k ( .s
`  T ) ( G `  ( F `
 x ) ) ) )
4943, 48eqtr4d 2471 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( G `  ( k ( .s
`  S ) ( F `  x ) ) )  =  ( k ( .s `  T ) ( ( G  o.  F ) `
 x ) ) )
50 eqid 2436 . . . . . . . . . . . . . . . 16  |-  ( LSpan `  T )  =  (
LSpan `  T )
5124, 35, 50lmhmlsp 16125 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  ( S LMHom 
T )  /\  ( F " ( I  \  { x } ) )  C_  B )  ->  ( G " (
( LSpan `  S ) `  ( F " (
I  \  { x } ) ) ) )  =  ( (
LSpan `  T ) `  ( G " ( F
" ( I  \  { x } ) ) ) ) )
5240, 34, 51syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( G " ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) ) )  =  ( ( LSpan `  T ) `  ( G " ( F " ( I  \  { x } ) ) ) ) )
53 imaco 5375 . . . . . . . . . . . . . . 15  |-  ( ( G  o.  F )
" ( I  \  { x } ) )  =  ( G
" ( F "
( I  \  {
x } ) ) )
5453fveq2i 5731 . . . . . . . . . . . . . 14  |-  ( (
LSpan `  T ) `  ( ( G  o.  F ) " (
I  \  { x } ) ) )  =  ( ( LSpan `  T ) `  ( G " ( F "
( I  \  {
x } ) ) ) )
5552, 54syl6eqr 2486 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( G " ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) ) )  =  ( ( LSpan `  T ) `  ( ( G  o.  F ) " (
I  \  { x } ) ) ) )
5649, 55eleq12d 2504 . . . . . . . . . . . 12  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( ( G `  ( k
( .s `  S
) ( F `  x ) ) )  e.  ( G "
( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) ) )  <->  ( k
( .s `  T
) ( ( G  o.  F ) `  x ) )  e.  ( ( LSpan `  T
) `  ( ( G  o.  F ) " ( I  \  { x } ) ) ) ) )
5739, 56bitr3d 247 . . . . . . . . . . 11  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( (
k ( .s `  S ) ( F `
 x ) )  e.  ( ( LSpan `  S ) `  ( F " ( I  \  { x } ) ) )  <->  ( k
( .s `  T
) ( ( G  o.  F ) `  x ) )  e.  ( ( LSpan `  T
) `  ( ( G  o.  F ) " ( I  \  { x } ) ) ) ) )
5857notbid 286 . . . . . . . . . 10  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  ( x  e.  I  /\  k  e.  ( Base `  (Scalar `  S ) ) ) )  ->  ( -.  ( k ( .s
`  S ) ( F `  x ) )  e.  ( (
LSpan `  S ) `  ( F " ( I 
\  { x }
) ) )  <->  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
5958anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ( G  e.  ( S LMHom  T
)  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  /\  k  e.  ( Base `  (Scalar `  S ) ) )  ->  ( -.  (
k ( .s `  S ) ( F `
 x ) )  e.  ( ( LSpan `  S ) `  ( F " ( I  \  { x } ) ) )  <->  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
6015, 59sylan2 461 . . . . . . . 8  |-  ( ( ( ( ( G  e.  ( S LMHom  T
)  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  /\  k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } ) )  -> 
( -.  ( k ( .s `  S
) ( F `  x ) )  e.  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) )  <->  -.  ( k
( .s `  T
) ( ( G  o.  F ) `  x ) )  e.  ( ( LSpan `  T
) `  ( ( G  o.  F ) " ( I  \  { x } ) ) ) ) )
6160ralbidva 2721 . . . . . . 7  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  ->  ( A. k  e.  (
( Base `  (Scalar `  S
) )  \  {
( 0g `  (Scalar `  S ) ) } )  -.  ( k ( .s `  S
) ( F `  x ) )  e.  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) )  <->  A. k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
62 eqid 2436 . . . . . . . . . . . 12  |-  (Scalar `  T )  =  (Scalar `  T )
6325, 62lmhmsca 16106 . . . . . . . . . . 11  |-  ( G  e.  ( S LMHom  T
)  ->  (Scalar `  T
)  =  (Scalar `  S ) )
6463fveq2d 5732 . . . . . . . . . 10  |-  ( G  e.  ( S LMHom  T
)  ->  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  S )
) )
6563fveq2d 5732 . . . . . . . . . . 11  |-  ( G  e.  ( S LMHom  T
)  ->  ( 0g `  (Scalar `  T )
)  =  ( 0g
`  (Scalar `  S )
) )
6665sneqd 3827 . . . . . . . . . 10  |-  ( G  e.  ( S LMHom  T
)  ->  { ( 0g `  (Scalar `  T
) ) }  =  { ( 0g `  (Scalar `  S ) ) } )
6764, 66difeq12d 3466 . . . . . . . . 9  |-  ( G  e.  ( S LMHom  T
)  ->  ( ( Base `  (Scalar `  T
) )  \  {
( 0g `  (Scalar `  T ) ) } )  =  ( (
Base `  (Scalar `  S
) )  \  {
( 0g `  (Scalar `  S ) ) } ) )
6867ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  ->  (
( Base `  (Scalar `  T
) )  \  {
( 0g `  (Scalar `  T ) ) } )  =  ( (
Base `  (Scalar `  S
) )  \  {
( 0g `  (Scalar `  S ) ) } ) )
6968raleqdv 2910 . . . . . . 7  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  ->  ( A. k  e.  (
( Base `  (Scalar `  T
) )  \  {
( 0g `  (Scalar `  T ) ) } )  -.  ( k ( .s `  T
) ( ( G  o.  F ) `  x ) )  e.  ( ( LSpan `  T
) `  ( ( G  o.  F ) " ( I  \  { x } ) ) )  <->  A. k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
7061, 69bitr4d 248 . . . . . 6  |-  ( ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F : I --> B  /\  I  e.  _V )
)  /\  x  e.  I )  ->  ( A. k  e.  (
( Base `  (Scalar `  S
) )  \  {
( 0g `  (Scalar `  S ) ) } )  -.  ( k ( .s `  S
) ( F `  x ) )  e.  ( ( LSpan `  S
) `  ( F " ( I  \  {
x } ) ) )  <->  A. k  e.  ( ( Base `  (Scalar `  T ) )  \  { ( 0g `  (Scalar `  T ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
7170ralbidva 2721 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  -> 
( A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } )  -.  (
k ( .s `  S ) ( F `
 x ) )  e.  ( ( LSpan `  S ) `  ( F " ( I  \  { x } ) ) )  <->  A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  T ) )  \  { ( 0g `  (Scalar `  T ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
7217ad2antrr 707 . . . . . 6  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  ->  S  e.  LMod )
73 simprr 734 . . . . . 6  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  ->  I  e.  _V )
74 eqid 2436 . . . . . . 7  |-  ( 0g
`  (Scalar `  S )
)  =  ( 0g
`  (Scalar `  S )
)
7524, 26, 35, 25, 27, 74islindf2 27261 . . . . . 6  |-  ( ( S  e.  LMod  /\  I  e.  _V  /\  F :
I --> B )  -> 
( F LIndF  S  <->  A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } )  -.  (
k ( .s `  S ) ( F `
 x ) )  e.  ( ( LSpan `  S ) `  ( F " ( I  \  { x } ) ) ) ) )
7672, 73, 20, 75syl3anc 1184 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  -> 
( F LIndF  S  <->  A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  S ) )  \  { ( 0g `  (Scalar `  S ) ) } )  -.  (
k ( .s `  S ) ( F `
 x ) )  e.  ( ( LSpan `  S ) `  ( F " ( I  \  { x } ) ) ) ) )
77 lmhmlmod2 16108 . . . . . . 7  |-  ( G  e.  ( S LMHom  T
)  ->  T  e.  LMod )
7877ad2antrr 707 . . . . . 6  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  ->  T  e.  LMod )
7910ad2ant2lr 729 . . . . . 6  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  -> 
( G  o.  F
) : I --> C )
80 lindfmm.c . . . . . . 7  |-  C  =  ( Base `  T
)
81 eqid 2436 . . . . . . 7  |-  ( Base `  (Scalar `  T )
)  =  ( Base `  (Scalar `  T )
)
82 eqid 2436 . . . . . . 7  |-  ( 0g
`  (Scalar `  T )
)  =  ( 0g
`  (Scalar `  T )
)
8380, 41, 50, 62, 81, 82islindf2 27261 . . . . . 6  |-  ( ( T  e.  LMod  /\  I  e.  _V  /\  ( G  o.  F ) : I --> C )  -> 
( ( G  o.  F ) LIndF  T  <->  A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  T ) )  \  { ( 0g `  (Scalar `  T ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
8478, 73, 79, 83syl3anc 1184 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  -> 
( ( G  o.  F ) LIndF  T  <->  A. x  e.  I  A. k  e.  ( ( Base `  (Scalar `  T ) )  \  { ( 0g `  (Scalar `  T ) ) } )  -.  (
k ( .s `  T ) ( ( G  o.  F ) `
 x ) )  e.  ( ( LSpan `  T ) `  (
( G  o.  F
) " ( I 
\  { x }
) ) ) ) )
8571, 76, 843bitr4d 277 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C )  /\  ( F :
I --> B  /\  I  e.  _V ) )  -> 
( F LIndF  S  <->  ( G  o.  F ) LIndF  T ) )
8685exp32 589 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C )  -> 
( F : I --> B  ->  ( I  e.  _V  ->  ( F LIndF  S  <-> 
( G  o.  F
) LIndF  T ) ) ) )
87863impia 1150 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( I  e.  _V  ->  ( F LIndF  S  <->  ( G  o.  F ) LIndF  T ) ) )
886, 14, 87pm5.21ndd 344 1  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F :
I --> B )  -> 
( F LIndF  S  <->  ( G  o.  F ) LIndF  T ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    \ cdif 3317    C_ wss 3320   {csn 3814   class class class wbr 4212   ran crn 4879   "cima 4881    o. ccom 4882    Fn wfn 5449   -->wf 5450   -1-1->wf1 5451   ` cfv 5454  (class class class)co 6081   Basecbs 13469  Scalarcsca 13532   .scvsca 13533   0gc0g 13723   LModclmod 15950   LSpanclspn 16047   LMHom clmhm 16095   LIndF clindf 27251
This theorem is referenced by:  lindsmm  27275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-sbg 14814  df-subg 14941  df-ghm 15004  df-mgp 15649  df-rng 15663  df-ur 15665  df-lmod 15952  df-lss 16009  df-lsp 16048  df-lmhm 16098  df-lindf 27253
  Copyright terms: Public domain W3C validator