Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsmm Structured version   Unicode version

Theorem lindsmm 27289
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b  |-  B  =  ( Base `  S
)
lindfmm.c  |-  C  =  ( Base `  T
)
Assertion
Ref Expression
lindsmm  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 492 . . . 4  |-  ( F 
C_  B  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
213ad2ant3 981 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
3 f1oi 5716 . . . . . 6  |-  (  _I  |`  F ) : F -1-1-onto-> F
4 f1of 5677 . . . . . 6  |-  ( (  _I  |`  F ) : F -1-1-onto-> F  ->  (  _I  |`  F ) : F --> F )
53, 4ax-mp 5 . . . . 5  |-  (  _I  |`  F ) : F --> F
6 simp3 960 . . . . 5  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  F  C_  B )
7 fss 5602 . . . . 5  |-  ( ( (  _I  |`  F ) : F --> F  /\  F  C_  B )  -> 
(  _I  |`  F ) : F --> B )
85, 6, 7sylancr 646 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (  _I  |`  F ) : F --> B )
9 lindfmm.b . . . . 5  |-  B  =  ( Base `  S
)
10 lindfmm.c . . . . 5  |-  C  =  ( Base `  T
)
119, 10lindfmm 27288 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  (  _I  |`  F ) : F --> B )  -> 
( (  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
128, 11syld3an3 1230 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
132, 12bitr3d 248 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( F  C_  B  /\  (  _I  |`  F ) LIndF 
S )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
14 lmhmlmod1 16114 . . . 4  |-  ( G  e.  ( S LMHom  T
)  ->  S  e.  LMod )
15143ad2ant1 979 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  S  e.  LMod )
169islinds 27270 . . 3  |-  ( S  e.  LMod  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
1715, 16syl 16 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
18 lmhmlmod2 16113 . . . . . . 7  |-  ( G  e.  ( S LMHom  T
)  ->  T  e.  LMod )
19183ad2ant1 979 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  T  e.  LMod )
2019adantr 453 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  T  e.  LMod )
21 simpr 449 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G " F )  e.  (LIndS `  T )
)
22 f1ores 5692 . . . . . . . 8  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-onto-> ( G " F ) )
23 f1of1 5676 . . . . . . . 8  |-  ( ( G  |`  F ) : F -1-1-onto-> ( G " F
)  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2422, 23syl 16 . . . . . . 7  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
25243adant1 976 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2625adantr 453 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
27 f1linds 27286 . . . . 5  |-  ( ( T  e.  LMod  /\  ( G " F )  e.  (LIndS `  T )  /\  ( G  |`  F ) : F -1-1-> ( G
" F ) )  ->  ( G  |`  F ) LIndF  T )
2820, 21, 26, 27syl3anc 1185 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) LIndF  T
)
29 df-ima 4894 . . . . 5  |-  ( G
" F )  =  ran  ( G  |`  F )
30 lindfrn 27282 . . . . . 6  |-  ( ( T  e.  LMod  /\  ( G  |`  F ) LIndF  T
)  ->  ran  ( G  |`  F )  e.  (LIndS `  T ) )
3119, 30sylan 459 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ran  ( G  |`  F )  e.  (LIndS `  T
) )
3229, 31syl5eqel 2522 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ( G " F )  e.  (LIndS `  T )
)
3328, 32impbida 807 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  |`  F ) LIndF  T ) )
34 coires1 5390 . . . 4  |-  ( G  o.  (  _I  |`  F ) )  =  ( G  |`  F )
3534breq1i 4222 . . 3  |-  ( ( G  o.  (  _I  |`  F ) ) LIndF  T  <->  ( G  |`  F ) LIndF  T )
3633, 35syl6bbr 256 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
3713, 17, 363bitr4d 278 1  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    C_ wss 3322   class class class wbr 4215    _I cid 4496   ran crn 4882    |` cres 4883   "cima 4884    o. ccom 4885   -->wf 5453   -1-1->wf1 5454   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084   Basecbs 13474   LModclmod 15955   LMHom clmhm 16100   LIndF clindf 27265  LIndSclinds 27266
This theorem is referenced by:  lindsmm2  27290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-ghm 15009  df-mgp 15654  df-rng 15668  df-ur 15670  df-lmod 15957  df-lss 16014  df-lsp 16053  df-lmhm 16103  df-lindf 27267  df-linds 27268
  Copyright terms: Public domain W3C validator