Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubN Unicode version

Theorem linepsubN 29941
Description: A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsub.n  |-  N  =  ( Lines `  K )
linepsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
linepsubN  |-  ( ( K  e.  Lat  /\  X  e.  N )  ->  X  e.  S )

Proof of Theorem linepsubN
Dummy variables  a 
b  c  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3258 . . . . . . . 8  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) ( a ( join `  K ) b ) }  C_  ( Atoms `  K )
2 sseq1 3199 . . . . . . . 8  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( X  C_  ( Atoms `  K )  <->  { c  e.  ( Atoms `  K )  |  c ( le `  K
) ( a (
join `  K )
b ) }  C_  ( Atoms `  K )
) )
31, 2mpbiri 224 . . . . . . 7  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  X  C_  ( Atoms `  K ) )
43a1i 10 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Atoms `  K )  /\  b  e.  ( Atoms `  K ) ) )  ->  ( X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) }  ->  X  C_  ( Atoms `  K ) ) )
5 eqid 2283 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2283 . . . . . . . . . 10  |-  ( Atoms `  K )  =  (
Atoms `  K )
75, 6atbase 29479 . . . . . . . . 9  |-  ( a  e.  ( Atoms `  K
)  ->  a  e.  ( Base `  K )
)
85, 6atbase 29479 . . . . . . . . 9  |-  ( b  e.  ( Atoms `  K
)  ->  b  e.  ( Base `  K )
)
97, 8anim12i 549 . . . . . . . 8  |-  ( ( a  e.  ( Atoms `  K )  /\  b  e.  ( Atoms `  K )
)  ->  ( a  e.  ( Base `  K
)  /\  b  e.  ( Base `  K )
) )
10 eqid 2283 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
115, 10latjcl 14156 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  a  e.  ( Base `  K )  /\  b  e.  ( Base `  K
) )  ->  (
a ( join `  K
) b )  e.  ( Base `  K
) )
12113expb 1152 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Base `  K )  /\  b  e.  ( Base `  K ) ) )  ->  ( a
( join `  K )
b )  e.  (
Base `  K )
)
139, 12sylan2 460 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Atoms `  K )  /\  b  e.  ( Atoms `  K ) ) )  ->  ( a (
join `  K )
b )  e.  (
Base `  K )
)
14 eleq2 2344 . . . . . . . . . . . . . . . . . . 19  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( p  e.  X  <->  p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) ( a ( join `  K ) b ) } ) )
15 breq1 4026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c  =  p  ->  (
c ( le `  K ) ( a ( join `  K
) b )  <->  p ( le `  K ) ( a ( join `  K
) b ) ) )
1615elrab 2923 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  <-> 
( p  e.  (
Atoms `  K )  /\  p ( le `  K ) ( a ( join `  K
) b ) ) )
175, 6atbase 29479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  ( Base `  K )
)
1817anim1i 551 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) ( a (
join `  K )
b ) )  -> 
( p  e.  (
Base `  K )  /\  p ( le `  K ) ( a ( join `  K
) b ) ) )
1916, 18sylbi 187 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( p  e.  ( Base `  K
)  /\  p ( le `  K ) ( a ( join `  K
) b ) ) )
2014, 19syl6bi 219 . . . . . . . . . . . . . . . . . 18  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( p  e.  X  ->  ( p  e.  ( Base `  K
)  /\  p ( le `  K ) ( a ( join `  K
) b ) ) ) )
21 eleq2 2344 . . . . . . . . . . . . . . . . . . 19  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( q  e.  X  <->  q  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) ( a (
join `  K )
b ) } ) )
22 breq1 4026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c  =  q  ->  (
c ( le `  K ) ( a ( join `  K
) b )  <->  q ( le `  K ) ( a ( join `  K
) b ) ) )
2322elrab 2923 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  <-> 
( q  e.  (
Atoms `  K )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) )
245, 6atbase 29479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  ( Base `  K )
)
2524anim1i 551 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) ( a (
join `  K )
b ) )  -> 
( q  e.  (
Base `  K )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) )
2623, 25sylbi 187 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( q  e.  ( Base `  K
)  /\  q ( le `  K ) ( a ( join `  K
) b ) ) )
2721, 26syl6bi 219 . . . . . . . . . . . . . . . . . 18  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( q  e.  X  ->  ( q  e.  ( Base `  K
)  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) )
2820, 27anim12d 546 . . . . . . . . . . . . . . . . 17  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( ( p  e.  X  /\  q  e.  X )  ->  (
( p  e.  (
Base `  K )  /\  p ( le `  K ) ( a ( join `  K
) b ) )  /\  ( q  e.  ( Base `  K
)  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) ) )
29 an4 797 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p  e.  (
Base `  K )  /\  p ( le `  K ) ( a ( join `  K
) b ) )  /\  ( q  e.  ( Base `  K
)  /\  q ( le `  K ) ( a ( join `  K
) b ) ) )  <->  ( ( p  e.  ( Base `  K
)  /\  q  e.  ( Base `  K )
)  /\  ( p
( le `  K
) ( a (
join `  K )
b )  /\  q
( le `  K
) ( a (
join `  K )
b ) ) ) )
3028, 29syl6ib 217 . . . . . . . . . . . . . . . 16  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( ( p  e.  X  /\  q  e.  X )  ->  (
( p  e.  (
Base `  K )  /\  q  e.  ( Base `  K ) )  /\  ( p ( le `  K ) ( a ( join `  K ) b )  /\  q ( le
`  K ) ( a ( join `  K
) b ) ) ) ) )
3130imp 418 . . . . . . . . . . . . . . 15  |-  ( ( X  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) ( a ( join `  K ) b ) }  /\  ( p  e.  X  /\  q  e.  X ) )  -> 
( ( p  e.  ( Base `  K
)  /\  q  e.  ( Base `  K )
)  /\  ( p
( le `  K
) ( a (
join `  K )
b )  /\  q
( le `  K
) ( a (
join `  K )
b ) ) ) )
3231anim2i 552 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  Lat  /\  ( a ( join `  K ) b )  e.  ( Base `  K
) )  /\  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  /\  ( p  e.  X  /\  q  e.  X ) ) )  ->  ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  (
( p  e.  (
Base `  K )  /\  q  e.  ( Base `  K ) )  /\  ( p ( le `  K ) ( a ( join `  K ) b )  /\  q ( le
`  K ) ( a ( join `  K
) b ) ) ) ) )
3332anassrs 629 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  -> 
( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  /\  (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) ) )
345, 6atbase 29479 . . . . . . . . . . . . 13  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  ( Base `  K )
)
35 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( le
`  K )  =  ( le `  K
)
365, 35, 10latjle12 14168 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  q  e.  ( Base `  K )  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) ) )  -> 
( ( p ( le `  K ) ( a ( join `  K ) b )  /\  q ( le
`  K ) ( a ( join `  K
) b ) )  <-> 
( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) ) )
3736biimpd 198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  Lat  /\  ( p  e.  ( Base `  K )  /\  q  e.  ( Base `  K )  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) ) )  -> 
( ( p ( le `  K ) ( a ( join `  K ) b )  /\  q ( le
`  K ) ( a ( join `  K
) b ) )  ->  ( p (
join `  K )
q ) ( le
`  K ) ( a ( join `  K
) b ) ) )
38373exp2 1169 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  Lat  ->  (
p  e.  ( Base `  K )  ->  (
q  e.  ( Base `  K )  ->  (
( a ( join `  K ) b )  e.  ( Base `  K
)  ->  ( (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) )  ->  ( p (
join `  K )
q ) ( le
`  K ) ( a ( join `  K
) b ) ) ) ) ) )
3938imp3a 420 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  Lat  ->  (
( p  e.  (
Base `  K )  /\  q  e.  ( Base `  K ) )  ->  ( ( a ( join `  K
) b )  e.  ( Base `  K
)  ->  ( (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) )  ->  ( p (
join `  K )
q ) ( le
`  K ) ( a ( join `  K
) b ) ) ) ) )
4039com23 72 . . . . . . . . . . . . . . . 16  |-  ( K  e.  Lat  ->  (
( a ( join `  K ) b )  e.  ( Base `  K
)  ->  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  ->  (
( p ( le
`  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) )  ->  ( p (
join `  K )
q ) ( le
`  K ) ( a ( join `  K
) b ) ) ) ) )
4140imp43 578 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  Lat  /\  ( a ( join `  K ) b )  e.  ( Base `  K
) )  /\  (
( p  e.  (
Base `  K )  /\  q  e.  ( Base `  K ) )  /\  ( p ( le `  K ) ( a ( join `  K ) b )  /\  q ( le
`  K ) ( a ( join `  K
) b ) ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) ( a ( join `  K ) b ) )
4241adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  /\  (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) )  /\  r  e.  ( Base `  K
) )  ->  (
p ( join `  K
) q ) ( le `  K ) ( a ( join `  K ) b ) )
435, 10latjcl 14156 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  ->  (
p ( join `  K
) q )  e.  ( Base `  K
) )
44433expib 1154 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  Lat  ->  (
( p  e.  (
Base `  K )  /\  q  e.  ( Base `  K ) )  ->  ( p (
join `  K )
q )  e.  (
Base `  K )
) )
455, 35lattr 14162 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  Lat  /\  ( r  e.  (
Base `  K )  /\  ( p ( join `  K ) q )  e.  ( Base `  K
)  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
) )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) )
46453exp2 1169 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  Lat  ->  (
r  e.  ( Base `  K )  ->  (
( p ( join `  K ) q )  e.  ( Base `  K
)  ->  ( (
a ( join `  K
) b )  e.  ( Base `  K
)  ->  ( (
r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) ) ) ) )
4746com24 81 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  Lat  ->  (
( a ( join `  K ) b )  e.  ( Base `  K
)  ->  ( (
p ( join `  K
) q )  e.  ( Base `  K
)  ->  ( r  e.  ( Base `  K
)  ->  ( (
r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) ) ) ) )
4844, 47syl5d 62 . . . . . . . . . . . . . . . 16  |-  ( K  e.  Lat  ->  (
( a ( join `  K ) b )  e.  ( Base `  K
)  ->  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  ->  (
r  e.  ( Base `  K )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) ) ) ) )
4948imp41 576 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  ( p  e.  ( Base `  K
)  /\  q  e.  ( Base `  K )
) )  /\  r  e.  ( Base `  K
) )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) )
5049adantlrr 701 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  /\  (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) )  /\  r  e.  ( Base `  K
) )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) ( a (
join `  K )
b ) )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) )
5142, 50mpan2d 655 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  ( (
p  e.  ( Base `  K )  /\  q  e.  ( Base `  K
) )  /\  (
p ( le `  K ) ( a ( join `  K
) b )  /\  q ( le `  K ) ( a ( join `  K
) b ) ) ) )  /\  r  e.  ( Base `  K
) )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) )
5233, 34, 51syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  /\  r  e.  ( Atoms `  K ) )  -> 
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) ( a ( join `  K
) b ) ) )
53 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  /\  r  e.  ( Atoms `  K ) )  -> 
r  e.  ( Atoms `  K ) )
5452, 53jctild 527 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  /\  r  e.  ( Atoms `  K ) )  -> 
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
( r  e.  (
Atoms `  K )  /\  r ( le `  K ) ( a ( join `  K
) b ) ) ) )
55 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( r  e.  X  <->  r  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) ( a (
join `  K )
b ) } ) )
56 breq1 4026 . . . . . . . . . . . . . . 15  |-  ( c  =  r  ->  (
c ( le `  K ) ( a ( join `  K
) b )  <->  r ( le `  K ) ( a ( join `  K
) b ) ) )
5756elrab 2923 . . . . . . . . . . . . . 14  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  <-> 
( r  e.  (
Atoms `  K )  /\  r ( le `  K ) ( a ( join `  K
) b ) ) )
5855, 57syl6bb 252 . . . . . . . . . . . . 13  |-  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  ( r  e.  X  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) ( a ( join `  K
) b ) ) ) )
5958adantl 452 . . . . . . . . . . . 12  |-  ( ( ( K  e.  Lat  /\  ( a ( join `  K ) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  ->  ( r  e.  X  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) ( a ( join `  K
) b ) ) ) )
6059ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  /\  r  e.  ( Atoms `  K ) )  -> 
( r  e.  X  <->  ( r  e.  ( Atoms `  K )  /\  r
( le `  K
) ( a (
join `  K )
b ) ) ) )
6154, 60sylibrd 225 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  Lat  /\  (
a ( join `  K
) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  /\  r  e.  ( Atoms `  K ) )  -> 
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) )
6261ralrimiva 2626 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  ( a
( join `  K )
b )  e.  (
Base `  K )
)  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  /\  ( p  e.  X  /\  q  e.  X ) )  ->  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) )
6362ralrimivva 2635 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  ( a ( join `  K ) b )  e.  ( Base `  K
) )  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  ->  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) )
6463ex 423 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( a ( join `  K ) b )  e.  ( Base `  K
) )  ->  ( X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) }  ->  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) )
6513, 64syldan 456 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Atoms `  K )  /\  b  e.  ( Atoms `  K ) ) )  ->  ( X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) }  ->  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) )
664, 65jcad 519 . . . . 5  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Atoms `  K )  /\  b  e.  ( Atoms `  K ) ) )  ->  ( X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) }  ->  ( X  C_  ( Atoms `  K )  /\  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) ) )
6766adantld 453 . . . 4  |-  ( ( K  e.  Lat  /\  ( a  e.  (
Atoms `  K )  /\  b  e.  ( Atoms `  K ) ) )  ->  ( ( a  =/=  b  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  ->  ( X  C_  ( Atoms `  K )  /\  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) ) )
6867rexlimdvva 2674 . . 3  |-  ( K  e.  Lat  ->  ( E. a  e.  ( Atoms `  K ) E. b  e.  ( Atoms `  K ) ( a  =/=  b  /\  X  =  { c  e.  (
Atoms `  K )  |  c ( le `  K ) ( a ( join `  K
) b ) } )  ->  ( X  C_  ( Atoms `  K )  /\  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) ) )
69 linepsub.n . . . 4  |-  N  =  ( Lines `  K )
7035, 10, 6, 69isline 29928 . . 3  |-  ( K  e.  Lat  ->  ( X  e.  N  <->  E. a  e.  ( Atoms `  K ) E. b  e.  ( Atoms `  K ) ( a  =/=  b  /\  X  =  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) ( a ( join `  K
) b ) } ) ) )
71 linepsub.s . . . 4  |-  S  =  ( PSubSp `  K )
7235, 10, 6, 71ispsubsp 29934 . . 3  |-  ( K  e.  Lat  ->  ( X  e.  S  <->  ( X  C_  ( Atoms `  K )  /\  A. p  e.  X  A. q  e.  X  A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  X ) ) ) )
7368, 70, 723imtr4d 259 . 2  |-  ( K  e.  Lat  ->  ( X  e.  N  ->  X  e.  S ) )
7473imp 418 1  |-  ( ( K  e.  Lat  /\  X  e.  N )  ->  X  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   Linesclines 29683   PSubSpcpsubsp 29685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-lat 14152  df-ats 29457  df-lines 29690  df-psubsp 29692
  Copyright terms: Public domain W3C validator